Int J Adv Manuf Technol (2011) 53:1–10
DOI 10.1007/s00170-010-2796-y
ORIGINAL ARTICLE
Modular design applied to beverage-container injection molds
Ming-Shyan Huang amp; Ming-Kai Hsu
Received: 16 March 2010 / Accepted: 15 June 2010 / Published online: 25 June 2010
- Springer-Verlag London Limited 2010
Abstract This work applies modular design concepts to designating beverage-container injection molds. This study aims to develop a method of controlling costs and time in relation to mold development, and also to improve product design. This investigation comprises two parts: functional-ity coding, and establishing a standard operation procedure, specifically designed for beverage-container injection mold design and manufacturing. First, the injection mold is divided into several modules, each with a specific function. Each module is further divided into several structural units possessing sub-function or sub-sub-function. Next, dimen-sions and specifications of each unit are standardized and a compatible interface is constructed linking relevant units. This work employs a cup-shaped beverage container to experimentally assess the performance of the modular design approach. The experimental results indicate that the modular design approach to manufacturing injection molds shortens development time by 36% and reduces costs by 19 23% compared with the conventional ap-proach. Meanwhile, the information on modularity helps designers in diverse products design. Additionally, the functionality code helps effectively manage and maintain products and molds.
Keywords Beverage container . Injection mold . Modular design . Product family
M.-S. Huang (*) : M.-K. Hsu
Department of Mechanical and Automation Engineering and Graduate Institute of Industrial Design,
National Kaohsiung First University of Science and Technology, 2 Jhuoyue Road, Nanzih,
Kaohsiung City 811, Taiwan, Republic of China e-mail: mshuang@ccms.nkfust.edu.tw
1 Introduction
Recently, growing market competition and increasingly diverse customer demand has forced competitors to increase the speed at which they deliver new products to the market. However, developing a mold for mass produc-tion requires considering numerous factors, including product geometry, dimensions, and accuracy, leading to long product development time. Introducing modular design concepts into product design appears a key mean of facilitating product development, since it increases design flexibility and shortens delivery time [1–4]. Mean-while, a high level of product modularity enhances product innovativeness, flexibility, and customer services [5].
Modularity is to subdivide a complex product into modules that can be independently created and then are easily used interchangeably [6, 7]. There are three general fields where modularity could be implemented including modularity in design (MID), modularity in use (MIU), and modularity in production (MIP) [8]. MID involves stan-dardizing basic structural units which perform specific functions, thus facilitating flexible assembly of various products [9, 10]. MID can reveal product structure, namely the relationship among different products. Related products are termed product family and include both basic and specific functions. Developing product families offers benefits in terms of multi-purpose design and thus reduces production costs [11, 12]. MIU is consumer-driven decom-position of a product with a view to satisfying the ease of use and individually. MIP enables the factory floor to pre-combine a large number of components into modules and these modules to be assembled off-line and then brought onto the main assembly line to be incorporated into a small and simple series of tasks.
2 Int J Adv Manuf Technol (2011) 53:1–10
MID has been broadly applied to numerous areas and has exerted significant effects in terms of cost reduction and design diversity [13, 14]. However, there is limited empirical research that has applied modular design to molds [15–18]. This study thus aims to reduce mold development time by applying modular design and develop a standard operation procedure for designing beverage-container injection molds, which are characterized by scores or even hundreds of components.
2 General procedures of designing injection molds
Basically, an injection mold set consists of two primary components, the female mold and the male mold. The molten plastic enters the cavity through a sprue in the female mold. The sprue directs the molten plastic flowing through runners and entering gates and into the cavity geometry to form the desired part. Sides of the part that appear parallel with the direction of the mold opening are typically angled slightly to ease rejection of the part from the mold. The draft angle required for mold release is primarily dependent on the depth of the cavity and the shrinkage rate of plastic materials. The mold is usually designed so that the molded part reliably remains on the male mold when it opens. Ejector pins or ejector plate is placed in either half of the mold, which pushes the finished molded product or runner system out of a mold. The standard method of cooling is passing a coolant through a series of holes drilled through the mold plates and
connected by hoses to form a continuous pathway. The coolant absorbs heat from the mold and keeps the mold at a proper temperature to solidify the plastic at the most efficient rate. To ease maintenance and venting, cavities and co
剩余内容已隐藏,支付完成后下载完整资料
DOI 10.1007/s00170-010-2796-y
来源文章
模块化设计适用于饮料容器注塑模具
摘要:
本文将模块化设计概念应用于指定饮料容器注塑模具。本研究旨在开发一种控制与模具开发相关的成本和时间的方法,并改进产品设计。这项调查包括两个部分:功能性编码和建立标准操作程序,专门设计用于饮料容器注塑模具的设计和制造。首先,注塑模具被分成几个模块,每个模块都有特定的功能。每个模块又分为几个具有子功能或子子功能的结构单元。接下来,将每个单元的尺寸和规格标准化,并构建链接相关单元的兼容界面。这项工作采用杯形饮料容器来实验评估模块化设计方法的性能。实验结果表明,模块化设计方法制造注塑模具与传统方法相比,缩短了开发时间36%,成本降低了19〜23%。同时,关于模块化的信息对于设计师在不同的产品设计上也有所帮助。此外,功能代码有助于有效管理和维护产品和模具。
关键词:饮料容器\注塑模具\模块化设计\产品系列
- 介绍
最近,不断增长的市场竞争和日益多样化的客户需求迫使竞争者们提高新产品投放市场的速度。但是,开发大规模生产模具需要考虑多种因素,包括产品几何形状,尺寸和精度,从而导致产品开发时间过长。将模块化设计概念引入产品设计似乎是促进产品开发的关键手段,因为它增加了设计灵活性并缩短了交付时间[1–4]。同时,高水平的产品模块化提升了产品的创新性,灵活性和客户服务水平[5].
模块化是将一个复杂的产品细分成可独立创建的模块,然后可以互换使用[6, 7]。模块化包括三个通用领域,包括模块化设计(MID),模块化使用(MIU)和生产模块化(MIP)[8]。 MID涉及标准化执行特定功能的基本结构单元,从而促进各种产品的灵活组装[9, 10]。 MID可以揭示产品结构,即不同产品之间的关系。相关产品被称为产品系列,包括基本功能和特定功能。开发产品系列可为多用途设计带来益处,从而降低生产成本[11, 12]。 MIU是消费者驱动的产品分解,旨在满足易用性和个性化需求。 MIP使工厂车间能够将大量组件预先组合到模块中,并将这些模块脱机组装,然后将其带入主组装线,以转化成一系列小而简单的任务。
MID已广泛应用于众多领域,并在降低成本和设计多样性方面发挥了重要作用[13, 14]。模块化设计应用于模具设计的研究还很有限[15–18]。因此,本研究旨在通过将模块化设计应用到一个包含几百个部件的饮料容器注塑模具中去,并开发标准操作程序。
- 设计注塑模具的一般程序
基本上,注塑模具组由两个主要部件组成,即阴模和阳模。熔化的塑料通过阴模中的浇道进入模腔。熔化的塑料由浇口流过浇道并进入模腔形成所需的几何形状。与模具开口的方向平行部分的侧面通常略微成角度以减少零件脱离模具的阻力。脱模所需的拔模角度主要取决于模腔的深度和塑料材料的收缩率。模具通常设计成模制部件在打开时牢固的附着在阳模上。顶出销或顶出板放置在模具的另一半中,其将完成的模制产品或浇道系统从模具中推出。标准的冷却方法是将冷却液通过一系列穿过模板孔
的软管并形成连续回路。冷却剂从模具中吸收热量,并使模具保持在适当的温度以使塑料最有效的固化。为了便于维护和排气,腔体和芯体被分成几块,称为嵌件。通过替换嵌件,一个模具可以对同一部件进行多种变型。
一般模具设计过程包含两部分[19]:零件设计和模具设计。零件设计过程包含五个主要步骤:确定主要拉拔方向,确定型芯和型腔,计算收缩率,确定拔模角度,然后确定分型线。模具设计过程主要包括选择模具底座,定位模具零件,设计模芯和腔体,设计零件,设计冷却剂通道,制造返回销,增加顶销,制造浇口,依次加入定位环和浇口衬套。
- 饮料容器的模块化设计的应用
本研究通过五个阶段过程将模块化设计应用到饮料容器注塑模具中,如下所述:(1)产品分类和机器规格,(2)将注塑模具划分为基于功能的模块,(3)将单个模块划分为多个具有子功能的单元,以及每个单元的设计和组装的关系,(4)结构单元的标准化,以及(5)标准结构单元的编码。这些单独的过程在下面详述。
夹板 |
母模胚 |
公模胚 |
多种 |
热尖端衬套 |
热喷嘴 |
母模入块 |
杯底母模嵌件 |
公性冷却胚 |
公模入块 |
空气喷射器 |
顶出板 |
导边 |
导套 |
图1饮料容器注塑模具的模块化分类
夹紧模块
弹出模块
导引模块
成型模块
热流道模块
一个饮料容器
热流道注塑模具
成本
传统模具开发过程的持续时间
模块化模具开发流程的时间
高效的过程
材料交付
CNC加工
磨
车削
热处理
线切割
抛光
质地
EDM
半成品
成本降低
时间
减少工作时间
常规模具开发过程
模块化模具开发
处理
产品
3.2根据功能将注塑模具模块化
该步骤将模具组分成具有单独功能的多个模块。划分原则包括一般规则,划分规则,适用性规则和交换规则。一般来说,模块必须包含饮料容器注塑模具的所有功能。在划分规则中,每个功能模块必须包含至少一个基本功能,并且每个单元必须满足其自己的特定功能。至于适用性规则,单位实现单一功能是首选。对于交换规则,在将模具分为产品系列后,基本单元应该在模块之间互换。
图2传统和模块化模具开发过程的比较
3.1产品分类和机器规格
此步骤根据其几何形状和尺寸对所有饮料容器进行分类,并选择最合适生产规格的机器。注塑机有五个主要因素,包括足够的合模力,足够的理论注射量,连杆之间的足够距离,足够的模具厚度范围以及足够的模具夹紧行程。
-
- 将一个模块划分为多个单元
具有子功能以及每个单元的设计和装配之间存在关系
数字1示出了包括几个功能模块的饮料容器模具的结构。各个模块的功能通过子功能或子子功能进一步扩展到结构单元。分模块包括夹紧模块,热流道模块,成型模块,顶出模块和导向模块。夹紧模块用于将各个单元和模块精确定位在注塑机上。热流道模块通过加热来保持熔融塑料的流动性。成型
图3几何图形的设计
圆形截面 圆柱形模具入块设计
结构单元:杯型结构
杯型容器
(a)
横截面的矩形形状
长方体形模具入块设计
biner,b盆型容器
(b) 盆式容器
图4冷却系统的设计:模具冷却单元的凸形部分,b模具冷却单元的凹形部分
(1)单螺旋
(2)双螺旋
(3)块板
(4)喷泉
(a)
(1)线性形状
(2)U形
(3)多段
(4)块板
(b)
模块为了控制注塑件的几何尺寸和尺寸精度。弹出模块是从模腔中弹出注塑件。导向模块用于在模具合模期间精确定位阴模和阳模。
-
-
- 结构元件的几何设计
-
标准结构元件被制成半成品,能够满足成品的几何轮廓,从而显著缩短了制造模具交货时间。数字2 阐述了模块化设计模具开发过程与软件开发过程之间与
传统比较的过程。标准结构元件的生产速度很快,因为它们被预制成一般形状并且需要最少原材料来生产成品。
数字3显示了本研究中检查的饮料容器的几何设计。最符合产品形状的模具插件具有简单的几何形状。例如,圆柱体和长方体分别代表杯型和盆型容器。其余的组件被模块化,以便以类似于堆叠游戏块的方式有效地集成到整套注塑模具中。
图5喷射器的设计:一个喷气器,一个喷射器板
L型进气口
- 型出风口
线型
L型
-
- 线型
推顶环x 4
顶出板芯x 4
-
-
- 结构元件的装配设计
-
新产品开发涉及数百个结构元件,每个元件都包含多个维度。因为在维度上出现小错误,组装这样一个复杂的系统可能经常失败。本研究将涉及具有相互装配关系的结构元件的维度定义为联合维度。这些尺寸被简化为防错效果。下面介绍组装结构元素的步骤:
- 模块组装的方向 - 两条线用于将模具分成四个组装模块。第一行是定义母公模具的分型线。第二行定义了前后热流道板之间的边界。装配顺序遵循公模,母模,前热流道板和后热流道板的顺序。
- 组装单元的方向 - 属于上述四个组装模块的每个单元按顺序组装,即,确认注塑部件的外观尺寸,进一步确认模具插件和模腔的产品相关尺寸,固定模具
插入夹紧模块,使用阴模结构部件确定热流道模块的尺寸,计算夹紧板的精确尺寸,最后选择注塑机规格。装配顺序主要跟产品,模具插件,夹板和注塑机有关。
3.4结构元件的标准化
对于饮料容器注塑模具的结构单元,进一步引入了产品系统的概念,以提高各个功能单元之间的通用性和可交换性。数字4 举例说明了可互换代替的冷却系统。此外,5显示了用于产品系列的各种喷射系统的设计。
3.4.1冷却系统的设计
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[477917],资料为PDF文档或Word文档,PDF文档可免费转换为Word
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。