英语原文共 8 页,剩余内容已隐藏,支付完成后下载完整资料
UASB厌氧处理工艺的现状与发展
摘 要:本文介绍了UASB反应器的由来、工作原理、特点、最新开发和应用研究进展,指出了近期UASB反应器的研究重点。
关键词:UASB;厌氧处理工艺;
1. 引言
厌氧生物处理作为利用厌氧性微生物的代谢特性,在不需提供外源能量的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体。厌氧生物处理法不仅适用于高浓度有机废水,进水BOD最高浓度可达数万mg/l,也可适用于低浓度有机废水,如城市污水等。
厌氧生物处理过程能耗低;有机容积负荷高,一般为5-10kgCOD/(m3·d),最高的可达30-50kgCOD/(m3·d);剩余污泥量少;厌氧菌对营养需求低、耐毒性强、可降解的有机物分子量高;耐冲击负荷能力强;产出的沼气是一种清洁能源。
在全社会提倡循环经济,关注工业废弃物实施资源化再生利用的今天,厌氧生物处理显然是能够使污水资源化的优选工艺。近年来,污水厌氧处理工艺发展十分迅速,各种新工艺、新方法不断出现,包括有厌氧接触法、升流式厌氧污泥床、档板式厌氧法、厌氧生物滤池、厌氧膨胀床和流化床,以及第三代厌氧工艺EGSB和IC厌氧反应器,发展十分迅速。
升流式厌氧污泥床UASB( Up-flow Anaerobic Sludge Bed,注:以下简称UASB)工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,作为能够将污水中的污染物转化成10%再生清洁能源——沼气的一项技术。对于不同含固量污水的适应性也强,且其结构、运行操作维护管理相对简单,造价也相对较低,技术已经成熟,正日益受到污水处理业界的重视,得到广泛的欢迎和应用。
本文试图就UASB的工艺和运行以及UASB的设计启动等方面作简要阐述。
2. UASB的由来
1971年荷兰Wageningen农业大学Lettinga教授通过物理结构设计,利用重力场对不同密度物质作用的差异,发明了三相分离器。使活性污泥停留时间与废水停留时间分离,形成了上流式厌氧污泥床(UASB)反应器的雏型。1974年荷兰CSM公司在其6m3反应器处理甜菜制糖废水时,发现了活性污泥自身固定化机制形成的生物聚体结构,即颗粒污泥。颗粒污泥的出现,不仅促进了以UASB为代表的第二代厌氧反应器的应用和发展,而且还为第三代厌氧反应器的诞生奠定了基础。目前,在欧洲的UASB工艺已普遍形成了颗粒污泥,这使得厌氧UASB工艺在欧洲迅速得到了推广和普及。我国于1981年开始了UASB反应器的研究工作,该技术在我国已得到了实际的推广应用。UASB反应器是目前应用最为广泛的高速厌氧反应器,该技术在国内外已经发展成为厌氧处理的主流技术之一。
3. UASB反应器的基本构造和原理
(1) UASB反应器的构成
图1是UASB反应器的示意图。UASB反应器的主体部分
主要分为两个区域,即反应区和三相分离区。其中反应区为UASB反应器的工作主体。
(2) UASB反应器的工作原理
UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,污泥浓度可达到50~100g/l或更高,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,由于水的向上流动和产生的大量气体上升形成良好的自然搅拌作用,并使一部分污泥在反应区的上方形成相对稀薄的污泥悬浮区,悬浮区污泥浓度一般在5~40g/l范围内。悬浮液进入分离区后,气体首先进入集气室被分离,含有悬浮液的废水进入分离区的沉降室,污泥在此沉降,由斜面返回反应区,澄清后的处理水溢流排出。污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。沉淀至斜壁上的污泥沼泽斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。
基本要求有:
1)为污泥絮凝提供有利的物理、化学和力学条件,使厌氧污泥获得并保持良好的沉淀性能;
2)良好的污泥床常可形成一种相当稳定的生物相,保持特定的微生态环境,能抵抗较强的扰动力,较大的絮体具有良好的沉淀性能,从而提高设备内的污泥浓度;
3)通过在污泥床设备内设置一个沉淀区,使污泥细颗粒在沉淀区的污泥层内进一步絮凝和沉淀,然后回流入污泥床内。
4、UASB反应器的工艺特点
UASB反应器运行的3个重要的前提是:①反应器内形成沉降性能良好的颗粒污泥或絮状污泥;②产气和进水的均匀分布所形成的良好的搅拌作用;③设计合理的三相分离器,能使沉淀性能良好的污泥保留在反应器内。(1)利用微生物细胞固定化技术-污泥颗粒化UASB反应器利用微生物细胞固定化技术-污泥颗粒化实现了水力停留时间和污泥停留时间的分离,从而延长了污泥泥龄,保持了高浓度的污泥。颗粒厌氧污泥具有良好的沉降性能和高比产甲烷活性,且相对密度比人工载体小,靠产生的气体来实现污泥与基质的充分接触,节省了搅拌和回流污泥的设备和能耗;也无需附设沉淀分离装置。同时反应器内不需投加填料和载体,提高了容积利用率。(2)由产气和进水的均匀分布所形成的良好的自然搅拌作用在UASB反应器中,由产气和进水形成的上升液流和上窜气泡对反应区内的污泥颗粒产生重要的分级作用。这种作用不仅影响污泥颗粒化进程,同时还对形成的颗粒污泥的质量有很大的影响。同时这种搅拌作用实现了污泥与基质的充分接触。(3)设计合理的三相分离器是三相分离器运用在UASB反应器中最重要的设备。三相分离器的应用省却了辅助脱气装置,能收集从反应区产生的沼气,同时使分离器上的悬浮物沉淀下来,使沉淀性能良好的污泥能保留在反应器内。
5. UASB内的流态和污泥分布
UASB内的流态相当复杂,反应区内的流态与产气量和反应区高度相关,一般来说,反应区下部污泥层内,由于产气的结果,部分断面通过的气量较多,形成一股上升的气流,带动部分混合液(指污泥与水)作向上运动。与此同时,这股气、水流周围的介质则向下运动,造成逆向混合,这种流态造成水的短流。在远离这股上升气、水流的地方容易形成死角。在这些死角处也具有一定的产气量,形成污泥和水的缓慢而微弱的混合,所以说在污泥层内形成不同程度的混合区,这些混合区的大小与短流程度有关。悬浮层内混合液,由于气体的运动带动液体以较高速度上升和下降,形成较强的混合。在产气量较少的情况下,有时污泥层与悬浮层有明显的界线,而在产气量较多的情况下,这个界面不明显。有关试验表明,在沉淀区内水流呈推流式,但沉淀区仍然还有死区和混合区。
UASB内污泥浓度与设备的有机负荷率有关。是处理制糖废水试验时,UASB内污泥分布与负荷的关系。从图中可看出污泥层污泥浓度比悬浮层污泥浓度高,悬浮层的上下部分污泥浓度差较小,说明接近完全混合型流态,反应区内污泥的部分,当有机负荷很高时污泥层和悬浮层分界不明显。试验表明,污水通过底部0.4-0.6m的高度,已有90%的有机物被转化。由此可见厌氧污泥具有极高的活性,改变了长期以来认为厌氧处理过程进行缓慢的概念。在厌氧污泥中,积累有大量高活性的厌氧污泥是这种设备具有巨大处理能力的主要原因,而这又归于污泥具有良好的沉淀性能。
UASB具有高的容积有机负荷率,其主要原因是设备内,特别是污泥层内保有大量的厌氧污泥。工艺的稳定性和高效性很大程度上取决于生成具有优良沉降性能和很高甲烷活性的污泥,尤其是颗粒状污泥。与此相反,如果反应区内的污泥以松散的絮凝状体存在,往往出现污泥上浮流失,使UASB不能在较高的负荷下稳定运行。
6. 影响UASB反应器性能的主要因素
(1)厌氧废水处理温度也分为低温、中温和高温三类,其温度范围与相应的微生物生长范围相对应。迄今大多数厌氧废水处理系统在中温范围运行,以30℃~40℃最为常见,其最佳处理温度在35℃~40℃。高温工艺多在50℃~60℃间运行。低温厌氧工艺污泥活力明显低于中温和高温,其反应器负荷也相对较低,但对于某些温度较低的废水,低温工艺也是可供选择的方案。
(2)pH值是废水厌氧处理最重要的影响因素之一。厌氧处理中,水解菌与产酸菌对pH有较大范围的适应性,但对pH敏感的甲烷菌适宜的生长pH为6.5~7.8,这也是通常情况下厌氧处理所应控制的pH值。
(3)营养物与微量元素厌氧废水处理过程由细菌完成,因此应维持良好的细菌的生长环境,保证细菌有足够的合成自身细胞物质的化合物。依据组成细胞的化学成分,其中主要包括营养物氮、磷、钾和硫以及钙、镁、铁等其他的生长必须的少量的或微量的元素。
(4)碱度和挥发酸浓度传统理论认为要保证颗粒污泥的形成,反应器内碱度应维持在1000~5000mgCaCO3/l的范围内,如果反应器内的碱度小于1000mgCaCO3/l时,会导致其PH值下降;Tang等人在其研究中已经证实,保证UASB反应器内的污泥颗粒化的最低碱度是750mgCaCO3/l。在UASB反应器中,挥发酸的安全浓度控制在2000mg/l(以HAC计)以内,当VFA的浓度小于200mg/l时,一般是最好的。
(5)进水中悬浮固体浓度的控制对进水中悬浮固体(SS)浓度的严格控制要求是UASB反应器处理工艺与其他厌氧处理工艺的明显不同之处。一般来说,废水中的SS/COD的比值应控制在0.5以下。
(6)有毒有害物质的控制①氨氮浓度的控制:氨氮浓度的高低对厌氧微生物产生2种不同影响。当其浓度在50-200mg/l时,对反应器中的厌氧微生物有刺激作用;浓度在1500-3000mg/l时,将对微生物产生明显的抑制作用。一般宜将氨氮浓度控制在1000mg/l以下。②硫酸盐(SO2-4)浓度的控制:UASB反应器中的硫酸盐离子浓度不应大于5000mg/l,在运行过程中UASB的COD/SO2-4比值应大于10。③其他有毒物质:导致UASB反应器处理工艺失败的原因,除上述几种以外,其他有毒物质的存在也必须加以十分注意,这些物质主要是:重金属、碱土金属、三氯甲烷、氰化物、酚类、硝酸盐和氯气等。
7. UASB工艺的优缺点
UASB的主要优点是:
(1) UASB内污泥浓度高,平均污泥浓度为20-40gVSS/1;
(2) 有机负荷高,水力停留时间短,采用中温发酵时,容积负荷一般为10kgCOD/(m3·d)左右;
(3) 无混合搅拌设备,靠发酵过程中产生的沼气的上升运动,使污泥床上部的污泥处于悬浮状态,对下部的污泥层也有一定程度的搅动;
(4) 污泥床不填载体,节省造价及避免因填料发生堵塞问题;
(5) UASB内设三相分离器,通常不设沉淀池,被沉淀区分离出来的污泥重新回到污泥床反应区内,通常可以不设污泥回流设备。
主要缺点是:
(1) 进水中悬浮物需要适当控制,不宜过高,一般控制在100mg/l以下;
(2) 污泥床内有短流现象,影响处理能力;
(3) 对水质和负荷突然变化较敏感,耐冲击力稍差。
8. 应用研究现状
(1)启动技术方面Lepisto等较早开展此方面的研究。由于颗粒污泥是UASB技术的核心,颗粒污泥的形成与否直接关系到UASB反应器运行的成败。许多研究集中在厌氧颗粒污泥的培养上。迄今,对厌氧颗粒污泥的培养已取得了许多有益的经验。我国WU Yun等向接种污泥内加入膨润土和非离子型聚丙烯酰胺,处理啤酒生产废水,4周内形成了稳定颗粒污泥床。Zheng等研究了制药废水的厌氧处理启动技术。
(2)废水处理领域Lettinga博士和他的同事首先在实验室进行了容积为60L的UASB反应器的试验研究。结果表明,该处理装置的处理效果很好,其有机负荷率COD高达10Kg/(m3bull;d),此后进行了容积为6m3、30m3及200m3的半生产性试验研究,中温条件下,应用6m3容积的装置处理甜菜制糖废水的COD容积负荷高达36Kg/(m3bull;d);处理马铃薯加工废水COD负荷为15 Kg/(m3bull;d)以上,COD去除率为70%-90%。其后,荷兰、德国、瑞典、比利时和美国的研究者用UASB反应器进行了土豆加工废水、蚕豆加工废水、屠宰废水、罐头制品加工废水、甲醇废水、乙酸废水及纤维板废水的小试或生产性试验,都取得了较好的效果。据不完全统计,至1990年,世界各地已有205个生产规模的UASB系统投入运行,到1993年,这个数字已增加到400多。至今,在欧洲的UASB工艺已普遍形成了颗粒污泥。UASB工艺在我国的应用从80年代发展至今,应用越来越广泛。从80年代末的处理酒厂、啤酒厂废水(用单一UASB工艺),到90年代末期,与其他工艺联合使用,如UASB AF处理高浓度涤纶废水、PUASB加压处理制药废水等。同时也已经成功应用于城市污水处理和生活污水的处理。
9. UASB工艺的发展趋势
虽然UASB工艺在我国的应用已经有了较大发展,但与国外水平尚有差距,应进一步加强在UASB反应器及其配套设备的设备化和工程应用上的探索和实践。同时,在以下几个方面,UASB厌氧处理工艺也正在实现新的发展:①低温下UASB反应器的运行;②高温厌氧处理;③用于处理不积累或不产生新的颗粒污泥的UASB反应器;④处理含有高浓度
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[255228],资料为PDF文档或Word文档,PDF文档可免费转换为Word
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。
您可能感兴趣的文章
- 两种水处理厂活性污泥生物群落生物指示物真核生物的比较:一个案例研究外文翻译资料
- 针叶凋落物挥发性有机化合物的顶空-固相微萃取技术分析外文翻译资料
- 流动注射-在线固相萃取化学发光系统测定天然水中痕量铜外文翻译资料
- 电感耦合等离子体原子发射光谱法,火焰原子吸收光谱法和紫外 – 可见分光光度法测定制革废水中的总铬外文翻译资料
- 表面改性对活性炭吸附苯酚和2,4-二硝基苯酚的影响外文翻译资料
- 伊斯坦布尔一级和三级城市污水处理厂的成本比较评价外文翻译资料
- 基质固相分散(MSPD)是测定粉尘中多溴二苯醚(PBDEs)的简单有效的样品制备技术外文翻译资料
- 乙酰胆碱酯酶是广谱有机环境污染物的潜在生物标志物外文翻译资料
- 纳米材料导论概述:广谱应用外文翻译资料
- 植物和粪便生物炭的性质及其对邻苯二甲酸二丁酯和菲的吸附外文翻译资料