遗传算法的正齿轮优化外文翻译资料

 2022-08-15 14:35:22

Spur gear optimization by using genetic algorithm

a b s t r a c t

This paper involves about the optimization of spur gear set for its center distance, weight and tooth deflections are taken as an objective functions and the decision variable such as module, face width and number of teeth on pinion, and subjected to constraints namely, bending stress, contact stress. Since it is multi-objective function with constraints is very difficult to optimize using conventional optimization techniques, used non-traditional optimization technique called Genetic algorithm.

Non-traditional algorithms are very difficult to solve manually. Solutions for the non-traditional methods can be obtained by computerizing algorithms using “C” language. The results are calculated by using “C” language for three materials namely Cast Iron, C-45 and Alloy steel (15Ni2 Cr1).

  1. Introduction

Gears are used in most types of machinery and vehicles for the transmission of power. The design of gears is highly complicated involving the satisfaction of many constraints such as strength, pitting resistance, bending stress, scoring wear, and interference in involute gears etc. The concentration is focused on spur gear sets which are used to transmit motion between parallel shafts because of the reason that out of the various methods of power transmission, the toothed gear transmission stands unique due to its high efficiency, reliable service, transmit large power, compact layout and simple operation.

Gear design is an art as well as an engineering science. Designer based on his design principles and the knowledge about the gear, lays out a gear for a particular application. The community of engineers now knows that applying engineering principles alone cannot suggest a good design. It is, in many cases that the designerrsquo;s expertise suggests good design. The problem with the conventional design procedure is that it gives out a single solution and the manufacturing is carried out on that basis.

Optimization is the act of obtaining the best result under the given circumstances. Design optimization of spur gear sets at reduces the size, weight, tooth deflection and increase the life span of the gear. The optimization methodology adopted in this work is an artificial genetics approach proposed by Goldberg based on natural genetics. Genetic algorithms efficiently exploit useful information contained in a population of solutions to generate new solutions with better performance. Figure 1 shows the spur gear

Fig:1.the spur gear

    1. Genetic algorithms

Genetic Engineering is a growing field that is being utilized in a variety of areas. People are interested in this field because of the ability to make the next generations are easier and faster algorithms and are being used in multidisciplinary design methods for optimal design.

Genetic algorithms (GArsquo;s) are adaptive search optimization algorithms based on mechanics of natural selection and natural genetics. GArsquo;s operated on the survival of the fittest. Genetic Algorithms, a class of evolutionary algorithms are non-deterministic stochastic search methods that utilize the theories of evolution and natural selection to solve a problem within a complex solution space. GArsquo;s maintain a population of structures that evolve according to rules of selection and other operations that are referred to as “search operators” such as recombination and mutation. Each individual in the population receives a measure of its fitness in the environment. Reproduction focuses attention on high fitness individuals, thus exploiting the available fitness information. Recombination and mutation perturb those individuals providing general heuristics for exploration.

Genetic Algorithms begin with a population of randomly generated string that represents the problem and there possible solutions. Thereafter, each of these strings is evaluated to find its fitness. If a satisfactory solution based on the acceptability or search stoppage criterion exists search is stopped. If not, the initial population is subjected to genetic evolution to procreate the next generation of candidate solutions. The genetic process of procreation uses the population as the input. The members of the population are “processed by the four main GA operators – reproduction, crossover, mutation and inversion to create the progenies for the next generation of candidate-solutions. The progenies are then evaluated and tested for termination.

Gears are used in most types of machinery and vehicles for the transmission of power. The design of gears is highly complicated involving the satisfaction of many constraints such as strength, pitting resistance, bending stress, interference in involute gears and so on. Because of the reason that out of the various methods of power transmission, the toothed gear transmission stands unique due to its high efficiency, reliable service, simple operation, transmit exact velocity ratios, and transmit large powers in a compact layout. The main concentration is focused on spur gear set, that are used to transmit motion from one shat to another shaft whose axis are parallel to each other.

  1. Design optimization

The objectives of spur gear design here are minimize center distance,minimize weight of the meshing gear set ,minimize tooth deflection.

    1. Centre distance

The user of gears or products which contain gears often demands smaller gear sets. In general, the most desirable gear set is the smallest one that will perform the required job. Smaller gears are easier to make, run more smoothly due to small inertial loads and pitch line velocities and also less expensive. Smaller gears would require less material to make and less space to oper

剩余内容已隐藏,支付完成后下载完整资料


附录A 外文译文

遗传算法的正齿轮优化

摘要

本文以正齿轮的中心距,重量和齿偏度为目标函数,并将其模数,齿面宽度和小齿轮上的齿数作为决策变量,受弯曲应力,接触应力约束,对正齿轮组进行了优化。由于它是具有约束的多目标函数,使用常规优化技术很难进行优化,因此使用了非传统优化技术,即遗传算法。非传统算法很难手动解决。非传统方法的解决方案可以通过使用“ C”语言将算法计算机化来获得。通过“ C”语言对三种材料(铸铁,C-45和合金钢(15Ni2 Cr1))进行计算。

1.0 简介

齿轮在大多数类型的机械和车辆中用于传递动力。齿轮的设计非常复杂,需要满足许多约束条件,例如强度,抗点蚀性,弯曲应力,刻痕磨损以及渐开线齿轮的干扰等。注意力集中在正齿轮组上,正齿轮组用于在平行轴之间传递运动由于在各种动力传递方法中,齿轮传动装置因其高效,可靠的服务,传递大功率,紧凑的结构和简单的操作而独树一帜。

齿轮设计既是一门艺术,也是一门工程科学。设计师根据自己的设计原理和对齿轮的了解,为特定应用设计了齿轮。工程师们现在知道,仅应用工程原理并不能代表一个好的设计。在很多情况下,设计师的专业技能意味着好的设计。常规设计程序的问题在于,它仅仅只能给出了单个解决方案,并且制造是在此基础上进行的。

优化是在给定条件下获得最佳结果的行为。正齿轮组的设计优化可减小齿轮箱的尺寸,重量,齿挠度并延长其使用寿命。这项工作采用的最优化方法是戈德堡提出的一种基于自然遗传学人工遗传学方法。遗传算法可有效利用大量解决方案中包含的有用信息来生成性能更高的新解决方案。图.1.显示了正齿轮。

图1 正齿轮

1.1 遗传算法

基因工程是一个不断发展的领域,正在各个领域中得到利用。人们对这一领域很感兴趣是因为它们有能力使下一代算法变得更容易、更快,并且正被用于多学科设计方法中以实现最佳设计。

遗传算法(GA)是基于自然选择和自然遗传机制的自适应搜索优化算法。GA依靠优胜劣汰来经营。遗传算法是一类利用进化论和自然选择理论来解决复杂解决方案空间问题的非确定性随机搜索方法,。GA维护着大量的结构,这些结构会根据选择规则和其他称为“搜索算子”的操作(例如重组和突变)进行进化。人口中的每个人都可以衡量其在环境中的适应度。繁殖将注意力集中在高适合度的个体上,从而利用可用的适合度信息。重组和突变扰乱了那些为探索提供一般启发式的个体。

遗传算法以随机生成的字符串为起点,这些字符串表示问题和可能的解决方案。然后,对每个字符串进行评估以找到其适合度。如果存在基于可接受性或搜索停止标准的令人满意的解决方案,则停止搜索。如果不是这样,初始种群就会受到遗传进化的影响,从而产生下一代候选解决方案。繁殖的遗传过程将种群作为输入。种群成员由“ GA的四个主要操作员进行处理-繁殖,交叉,突变和倒位,以创建下一代候选解决方案的后代。然后对这些后代进行评估和终止试验”。

齿轮在大多数类型的机械和车辆中用于传递动力。齿轮的设计非常复杂,需要满足许多约束条件,例如强度,抗点蚀性,弯曲应力,渐开线齿轮的干扰等。由于在各种动力传递方法中,齿轮传动装置以其高效,可靠的服务,简单的操作,传递精确的速比以及在紧凑的布局中传递大功率而独树一帜。主要集中在正齿轮组,正齿轮组用于将运动从一个轴传递到另一根轴,该轴与轴之间是彼此平行。

2.0 设计优化

正齿轮设计的目标是最小化中心距、最小化啮合齿轮组的重量和最小化齿偏度。

2.1 中心距

齿轮或包含齿轮的产品的使用者通常需要较小的齿轮组。通常,最理想的齿轮组是可以完成所需工作的最小齿轮组。较小的齿轮更容易制造,由于惯性载荷和节距线速度较小而运行更平稳,并且价格也较便宜。较小的齿轮也仅需要较少的材料和较少的操作空间。以下是控制齿轮组中心距的方程式

中心距:a = 0.5 m(T1 T2

其中:a是以mm为中心的距离

m是以mm为单位的模块

T1是小齿轮上的齿数

T2是齿轮上的齿数

2.2 齿轮重量

齿轮组的使用者期望齿轮组的重量通常更轻,从而可以减少振动并在行驶中保持良好状态。减轻齿轮重量可提高非文具系统的性能。减轻重量可以节省材料,从而降低成本并易于组装。以下是控制齿轮组重量的方程式

重量W =m2b()g

其中:b是齿面的宽度,单位为mm

rho;1,rho;2是小齿轮和齿轮材料的密度

g是重力引起的加速度=9.81m/Sec2

2.3 齿轮齿偏度

尽管齿轮齿偏度与齿轮失效有很大关系,但在设计过程中通常不会考虑它。但是,对于任何要求较高的设计工作,必须高度考虑齿的挠度,并将其最小化。齿偏斜会导致更复杂的负载分配不均,并且对齿轮失效也会产生重大影响。控制齿轮齿偏度的方程为

挠度(delta;)=

其中:h1= 2 m(0.7854-tanpsi;)

h2 = 2 m (1.25 tanpsi; 0.7854)

HP是以千瓦为单位的功率Pd是径向间距

E是杨氏模量N / mm2

加载齿轮齿的挠曲是非常复杂的应力模式的结果,以至于悬臂的基本处理会产生误导性的结果(10)。哈里·沃克博士对该主题进行了实验研究。在弹性极限内,几何形状相似的齿的挠度与表面宽度每英寸的施加载荷成正比,并且与节距无关。此外,对于不同的齿形,给定载荷的挠度不遵循弯曲中基本悬臂的l / d3关系,其中l是长度,d是深度,但是通过实验发现,全深比例的形式与l / d成正比。

  1. 0 约束

约束表示设计变量和满足某些物理现象和某些资源限制的其他设计参数之间的某种功能关系。上述目标函数受到以下约束。

3.1 弯曲应力

弯曲失效通常是灾难性的。因此,在设计过程中应十分谨慎。为避免齿轮折断,弯曲应力应限制在材料的最大允许弯曲应力范围内。

弯曲应力sigma;b= i 1 / a m b y [Mt] lt;[sigma;b],材料弯曲应力

其中:i是速度比,单位为mm

a是以毫米为单位的中心距

m是以毫米为单位的模数

b是以mm为单位的齿宽

y是外形尺寸

[Mt]是扭矩,单位为N-mm

[sigma;b]是允许的弯曲应力,单位为N / mm2

3.2 接触应力

计算出的接触应力应保持小于材料的允许接触应力。

接触应力,材料表面应力

4.0 问题的表述

设计变量:x ={m,b,t}

目标函数:F(x)= f(x1) f(x2) f(x3

约束条件:g1(x) lt;b设计

g2(x)lt;C设计

变量:m =模数

b =齿宽

T =小齿轮上的齿数

目的:f(x1)=最小化齿轮组的中心距离

f(x2)=最小化齿轮组的重量

f(x3)=最小化齿轮组的齿偏

约束:g1(x)=弯曲应力

g2(x)=接触应力

5.0 常规计算结果

考虑到以下问题:将正齿轮组优化,并使用诸如模块,齿面宽度和小齿轮上的齿数等决策变量,将齿轮的中心距,重量和齿偏最小化作为目标函数,并受到诸如弯曲应力和接触应力。有了这些数据,解决了传统方法中的问题。

输入数据:功率P= 8 KW

速度比i= 3.2

小齿轮转速Np= 720 rpm

表1 三种材料的常规计算

材料

铸铁

C-45

合金钢

模数(mm)

3

3

3

齿宽(mm)

10

10

10

小齿轮上的齿数

18

18

18

中心距(mm)

114

114

114

齿轮重量(N)

19.94

19.99

19.81

偏转

0.000032

0.0000524

0.0000524

6.0 遗传算法结果

考虑到以下问题:将正齿轮组优化,并使用诸如模块,齿面宽度和小齿轮上的齿数等决策变量,将齿轮的中心距,重量和齿偏最小化作为目标函数,并受到诸如弯曲应力和接触应力。有了这些数据,就可以用非传统方法(遗传算法)解决问题。遗传算法解决方案使用软件TURBO C解决。

输入数据:功率P= 8 KW

速度比i= 3.2

小齿轮转速Np= 720 rpm

表2 三种材料的遗传算法结果

材料

铸铁

C-45

合金钢

世代数

150

150

150

在世代

123

144

150

模组(mm)

3.000000

3.000003

3.000027

齿宽(mm)

10.001736

10.001953

10.002194

小齿轮上的齿数

18.000000

18.000000

18.000000

中心距(mm)

113.400028

113.402069

113.401680

续表2

偏转

<p

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[422611],资料为PDF文档或Word文档,PDF文档可免费转换为Word

</p

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。