房价对中国消费的影响:财富效应还是替代效应?外文翻译资料

 2022-08-15 15:47:26

How does housing price affect consumption in China: Wealth effect or substitution effect?

  1. Introduction

Since the housing market reform in 1998, Chinas housing market has gone through a period of rapid development and housing prices have increased at an alarming speed. According to the data of National Bureau of Statistics of China, the average urban housing price rose from 2112 Yuan in 2000 to 6324 Yuan in 2014. Over the same period, another phenomenon which has drawn greater attention from both scholars and politicians is the continuous decline in consumption rate, from 46.9% in 2000 to 37.9% in 2014. By contrast, the countrys consumption rate is much lower than the worlds average level, i.e. 63.9% in 2014. Given the sharp contrast in trends between consumption rate and housing price, some scholars raised a question: does the rise in housing prices suppress consumption? It is this essential question that motivates this study.

As a major component of household wealth, housing asset exerts a significant impact on consumption, which in turn drives the development of an economy (Hui, Ng, amp; Lau, 2011; Zhang, Li, Chen, amp; Li, 2016). Obviously, it is extremely important to have a deepernderstanding of the effect of housing price on consumption. With such knowledge, the Chinese government can enact more appropriate policies to strike a better balance between housing and consumer markets, with a view to achieving a more sustainable economic growth.

In academia, the effect of housing price on consumption has been widely discussed. The theoretical literature proposes some hypotheses on how consumption responds to fluctuation in housing prices. A rise in housing prices may boost consumption by increasing households wealth or easing their credit constraint, which is called wealth effect; On the other hand, a rise in housing price can exert a negative effect on households expenditure by increasing their cost of housing services and shrinking their budget, namely substitution effect. The majority of Chinese scholars interested in this area find that housing price may suppress consumption, indicating housing assets show a substitution effect (Bussiere, Kalantzis, Lafarguette, amp; Sicular, 2013; Chamon amp; Prasad, 2010; Cheng amp; Huang, 2013).

  1. Literature review

An increase in housing prices lead to an improvement in net housing wealth for house owners and then raise their consumption, which is called wealth effect. On the other hand, substitution effects are also identified in previous literature. The rationale behind it is that when the housing price rises, the costs of purchasing and renting house will increase, so people need to save more and consume less to pay for the down payments and future loan repayments.

In academia, there is no doubt that market conditions affect housing price (Hui amp; Wang, 2014). Moreover, some scholars have already discussed the role of market condition in the relationship between housing price and consumption. For example, Catte, Girouard, Price, and Andreacute; (2004) suggest that the marginal propensity to con- sume out of housing wealth is different from country to country due to various financial structures and home ownership rate. Browning, Goslash;rtz, and Leth-Petersen (2013) find no significant effect of housing price on consumption before the financial reform in Denmark, but a significant housing wealth effect among younger households after the reform. Using a panel data of fourteen emerging economies, Peltonen, Sousa and Vansteenkiste (2012) argue that the housing wealth effect and financial wealth effect are related to development of the financial market.

  1. Data and model specification
    1. Data sources

The data set of this paper covers 35 major cities in China between 2003 and 2014. As the aim of this study is to explore the net effect of housing price on total consumption through various transmission mechanisms at macro level, it is reasonable to use the per capita consumption expenditure of urban residents mul- tiplied by the average family size of each city as a proxy for household consumption (cons).The independent variable is housing price (hp), which is denoted by the average housing transaction price of each city.For other control variables, household saving (saving) is equal to per capita saving multiplied by family size of each city, while household income (inc) is denoted by per capita annual disposable income multi- plied by family size of each city. All the data above are from the “China city statistical year book in 2003-2014”.

    1. Estimation model

To begin with, we set the estimated consumption as a function of income, housing price and financial wealth. The model is shown as follows:

The subscripts i and t denote the city and time respectively.lnhp is a proxy for housing price in logarithmic form. lncons , lninc and lnsaving denote household consumption, income and saving in logarithmic form, respectively.

  1. Empirical analysis
    1. Unit root test

In order to avoid spurious regression problems, we first undertake unit root test on all variables using homogeneous panels LLC, heterogeneous panel LPS, and Fisher-ADF methods.

Table 1

Unit test of dependent and independent variables.

Level-value equation

First differenced equation

Variable

LLC

IPS

F-ADF

LLC

IPS

F-ADF

lncons

minus;3.7926*** (0.0001)

minus;0.0253 (0.4899)

99.9783** (0.0108)

剩余内容已隐藏,支付完成后下载完整资料


房价对中国消费的影响:财富效应还是替代效应?

  1. 介绍

自1998年住房市场化改革以来,我国住房市场经历了一个快速发展的时期,住房价格以惊人的速度增长。根据国家统计局的数据,城镇住房平均价格从2000年的2112元上涨到2014年的6324元。在同一时期,另一个引起学者和政治家更多关注的现象是消费率的持续下降,从2000年的46.9%下降到2014年的37.9%。鉴于消费率与房价走势的强烈反差,一些学者提出了一个问题:房价上涨是否抑制了消费?正是这个重要的问题激发了这项研究。

在学术界,房价对消费的影响已经被广泛讨论。房价上涨可能通过增加家庭财富或放松信贷约束来拉动消费,即所谓的财富效应;另一方面,房价上涨可能通过增加家庭住房成本和收缩家庭预算,即替代效应,对家庭支出产生负面影响。

作为家庭财富的主要组成部分,住房资产对消费产生重大影响,进而推动经济发展(Hui,Ng,amp;amp;Lau,2011;Zhang,Li,Chen,amp;amp;Li,2016)。显然,深入了解房价对消费的影响是极其重要的。有了这些知识,中国政府可以制定适当的政策,在住房和消费市场之间取得更好平衡,以实现可持续的经济增长。

  1. 文献综述

房价上涨导致业主住房净财富增加,进而提高其消费,这就是所谓的财富效应。另一方面,替代效应在以往的文献中也有所发现。其背后的理由是,当房价上涨时,购房和租房的成本会增加,因此人们需要更多的储蓄和更少的消费来支付首付和未来的贷款偿还。

在学术界,市场条件无疑会影响房价(Huiamp;amp;Wang,2014)。此外,一些学者已经讨论了市场条件在房价与消费关系中的作用。例如,Catte、Girouard、Price和Andreacute;(2004年)认为,由于不同的金融结构和住房拥有率,不同国家的住房财富的边际消费倾向不同。Browning、Goslash;rtz和Leth Petersen(2013)发现,丹麦金融改革前房价对消费没有显著影响,但改革后年轻家庭的住房财富效应显著。Peltonen、Sousa和Vansteenkiste(2012)使用14个新兴经济体的面板数据,认为住房财富效应和金融财富效应与金融市场的发展有关。

  1. 数据及模型设定

3.1 数据来源

本文的数据集涵盖了2003-2014年中国35个主要城市。由于本研究的目的是通过宏观层面上的各种传导机制来探讨房价对总消费的净效应,以城市居民人均消费支出乘以各城市平均家庭规模作为居民消费(cons)的替代指标是合理的,自变量为住房价格(hp),用各城市平均住房交易价格表示,其他控制变量为:家庭储蓄(saving)等于人均储蓄乘以每个城市的家庭规模,家庭收入(inc)表示为人均年可支配收入乘以每个城市的家庭规模。在阈值变量方面,我们使用房价与收入作为住房市场状况“可承受性”(rem)的代理变量,以及金融机构存款占GDP的比率作为区域金融发展(fd)的代理变量。以上所有相关数据均来自《2003-2014中国城市统计年鉴》。

3.2 估算模型

首先,我们将估计消费设定为收入、房价和金融财富的函数。模型如下:

下标i和t分别表示城市和时间,lnhp是对数形式的住房价格的代理,lncons、lninc和lnsaving分别以对数形式表示家庭消费、收入和储蓄。

  1. 实证分析

4.1 单位根检验

为了避免虚假回归问题,我们首先使用同质面板LLC、异质面板LPS和费希尔ADF方法对所有变量进行单位根检验,检验结果如下所示:

表1 因变量和自变量的单位根检验

水平值方程

一阶差分方程

变量

LLC

IPS

F-ADF

LLC

IPS

F-ADF

lncons

minus;3.7926*** (0.0001)

minus;0.0253 (0.4899)

99.9783** (0.0108)

minus;16.1775*** (0.0000)

minus;4.4301*** (0.0000)

144.5937*** (0.0000)

lninc

minus;0.7207 (0.2355)

0.3464 (0.6355)

68.5639 (0.5262)

minus;4.8963*** (0.0000)

minus;3.1340*** (0.0009)

114.4330*** (0.0006)

lnhp

minus;0.4014 (0.6559)

minus;0.4105 (0.3407)

73.7527 (0.3565)

minus;12.7752*** (0.0000)

minus;3.5064*** (0.0002)

126.4104*** (0.0000)

lnsaving

1.5204 (0.9358)

0.2524 (0.5996)

80.9693 (0.1740)

minus;4.3744*** (0.0000)

minus;2.6212*** (0.0044)

217.2843*** (0.0000)

注:***和**分别表示1%和5%水平下的统计显著性。

表1显示,LLC和Fisher-ADF在I(1)水平下的所有三个测试的所有变量都是平稳的。因此,我们使用模型中所有变量的一阶差分值。

表2 阈值变量的单位根检验

变量

LLC

IPS

Fisher-ADF

rem

minus;7.2566*** (0.0000)

2.9906** (0.0014)

211.6374*** (0.0000)

fd

minus;6.6889*** (0.0000)

minus;2.0123** (0.0221)

112.4969*** (0.0010)

注:***和**分别表示1%和5%水平下的统计显著性。

表2显示,就所有单位根检验结果而言,rem和fd已经是平稳序列。因此,rem和fd满足阈值变量的要求。

4.2 阈值效应检验

为了确定rem和fd的阈值数目,在零阈值、一阈值和二阈值的假设下,对固定效应模型进行了估计。

表3 阈值效应检验

Threshold

rem

F-value

P-value

fd

F-value

P-value

Single

5.11

0.2520

44.15

0.0000***

Double

9.17**

0.0340**

6.09

0.2200

Triple

6.77

0.5200

9.48

0.6400

注:三项测试各使用300个bootstrap复制;***和**分别表示1%和5%水平下的统计显著性。

表3显示,阈值变量rem有两个阈值,而fd只有一个阈值。

表4 阈值估计器(水平=95)

Variables

Model

Point estimation

Lower

Upper

rem

TH1

5.0882

5.0794

5.0899

TH2

5.9625

5.9442

5.9667

fd

TH1

1.8827

1.8825

1.8863

阈值的点和置信区间估计如表4所示。rem的两个估计阈值分别为5.0882和5.9625,将样本分为三个状态:低rem状态、中rem状态和高rem状态。fd的单一阈值为1.8827,将样本分为两个制度:低水平金融发展制度和高水平金融发展制度。

4.3 阈值估计结果

为了进行比较,我们首先使用一个固定效应模型来检验住房价格和消费之间的关系。

注:***、**和*分别表示1%、5%和10%水平下的统计显著性。

如表5第(2)列所示,在相对较低的住房价格制度(remle;5.0882)中,住房价格对消费产生显著的积极影响;在rem介于5.0882和5.9625之间的情况下,房价对消费有着显著的负面影响;在rem大于阈值5.9625的情况下,房价对消费的影响不显著。

表5第(3)列的估计结果表明,在不同的金融发展体制下,对消费的影响是不对称的。在金融发展程度较低(fdle;1.8827)的情况下,住房价格系数为正,但不显著,表明住房价格对消费没有影响;在金融发展达到相对较高水平(fd N 1.8827)的情况下,房价上涨对消费有积极而显著的影响,这表明住房资产显示出财富效应。

  1. 结论

基于2003-2014年中国35个主要城市的数据,考虑到住房市场的异质性和金融市场的自由化,本研究采用阈值回归方法探讨了住房价格对消费的非对称影响。阈值估计结果如下:

住房和金融市场对住房价格和消费之间的关系至关重要。在房价收入比低于5.0882的健康住房市场制度下,财富效应是显著的。相比之下,在房价收入比介于5.0882和5.9625之间的制度中,替代效应占主导地位。正如世界银行所建议的那样,健康的住房市场的估计价值应在4-6这样的合理范围。这也表明,中国的大多数房地产市场运作得不太好,这些城市的人买不起房价。金融发展的门槛估计表明,在存款与GDP之比大于1.8827的发达金融市场制度下,住房价格对消费具有财富效应。

研究结果表明,住宅市场对住宅价格与消费的关联具有重要意义。因此,中国政府应制定适当的房地产政策,确保房地产市场健康稳定发展,使房价保持在合理、可承受的水平。此外,我们的发现证实了金融市场在中国从住房财富到消费的传导渠道中的重要作用。然而,由于缺乏各种抵押贷款融资渠道和产品,该国金融市场的

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[413861],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。