International Journal of Concrete Structures and Materials Vol.7, No.1, pp.35–50, March 2013
DOI 10.1007/s40069-013-0030-7 ISSN 1976-0485 / eISSN 2234-1315
Rapid Repair of Severely Damaged RC Columns with Different Damage Conditions: An Experimental Study
Ruili He1), Lesley H. Sneed1),*, and Abdeldjelil Belarbi2)
(Received December 31, 2012, Accepted February 13, 2013)
Abstract: Rapid and effective repair methods are desired to enable quick reopening of damaged bridges after an earthquake occurs, especially for those bridges that are critical for emergency response and other essential functions. This paper presents results of tests conducted as a proof-of-concept in the effectiveness of a proposed method using externally bonded carbon fiber reinforced polymer (CFRP) composites to rapidly repair severely damaged RC columns with different damage conditions. The experimental work included five large-scale severely damaged square RC columns with the same geometry and material properties but with different damage conditions due to different loading combinations of bending, shear, and torsion in the previous tests. Over a three-day period, each column was repaired and retested under the same loading combination as the corresponding original column. Quickset repair mortar was used to replace the removed loose concrete. Without any treatment to damaged reinforcing bars, longitudinal and transverse CFRP sheets were externally bonded to the prepared surface to restore the column strength. Measured data were analyzed to investigate the performance of the repaired columns compared to the corresponding original column responses. It was concluded that the technique can be successful for severely damaged columns with damage to the concrete and transverse reinforcement. For severely damaged columns with damaged longitudinal reinforcement, the technique was found to be successful if the damaged longitudinal reinforcement is able to provide tensile resistance, or if the damage is located at a section where longitudinal CFRP strength can be developed.
Keywords: CFRP composites, cyclic loading, rapid repair, RC columns, severely damaged.
Introduction
Damage to bridge structures during an earthquake can have devastating social and economic consequences, par- ticularly for bridges located along key routes that are critical for emergency response and other essential functions. Such bridges are defined as lsquo;lsquo;importantrsquo;rsquo; by ATC-18 (1997), which stipulates that full access to lsquo;lsquo;importantrsquo;rsquo; bridges should be possible within three days after an earthquake. In order to restore access to essential traffic in affected areas, rapid and effective repair methods are desired for varying levels of damage to minimize the impact on the community.
Decades of study have demonstrated the effectiveness of externally bonded fiber reinforced polymer (FRP) in strengthening and repairing reinforced concrete (RC) columns. Most studies have focused on flexural or shear strengthening or repair application of various types of members or providing
1)Department of Civil, Architectural amp; Environmental Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA.
*Corresponding Author; E-mail: sneedlh@mst.edu 2)Department of Civil amp; Environmental Engineering, University of Houston, Houston, TX 77204, USA.
Copyright copy; The Author(s) 2013. This article is published with open access at Springerlink.com
confinement in case of columns. Among the studies on repair, most have focused on columns with slight or moderate damage in which concrete, steel, or FRP jacketing was used to restore the strength and displacement capacity (Elkin et al. 1999; Stoppenhagen et al. 1995; Chai et al. 1991; Saadatmanesh et al. 1997; Cheng et al. 2003). Few studies, however, have focused on repairing severely damaged ductile RC bridge columns, especially those with buckled or fractured longitudinal rein- forcing bars (Elkin et al. 1999; Cheng et al. 2003). Although these techniques have been shown to be effective in restoring the strength and displacement capacity, rapid repair was not emphasized, and timely reopening of the bridge was not a consideration. To address this issue, Vosooghi and Saiidi (Vosooghi and Saiidi 2012) recently developed guidelines for rapid repair of damaged bridge columns with carbon FRP (CFRP). Their studies focused on circular RC bridge columns under flexural and shear loading conditions without ruptured longitudinal reinforcing bars.
Bridge columns may experience complex axial, shear, bending, and torsional loading during an earthquake. As shown by Prakash et al. (2012), interaction between loading actions influences the location and type of damage. There- fore, it is of interest to develop a repair technique for dam- aged columns with different damage conditions resulting from combined loading effects.
The present study was conducted as a proof-of-concept with the objective of determining the feasibility and
35
effectiveness of a proposed technique to rapidly repair severely damaged RC bridge columns with different damage conditions using externally-bonded CFRP for emergency service use after an earthquake. The term lsquo; rapidrsquo;rsquo; in the context of this study refers to a three-day time period as defined by ATC-18 (1997) and other researchers (Vosooghi et al. 2008). This res
剩余内容已隐藏,支付完成后下载完整资料
外文翻译
不同损伤条件下严重损坏的钢筋混凝土柱的快速修复的实验研究
Ruili He, Lesley H. Sneed, Abdeldjelil Belarbi
摘要:
一次地震发生之后往往希望用快速而有效的方法来迅速启动对损坏桥梁的修复,特别是对于那些应急救援和其他有重要功能的桥梁而言。本文介绍了一个概念证明——采用外贴碳化纤维强化塑料(以下简称CFRP)合成物快速修复在不同损伤情况下严重受损的钢筋混凝土柱的方法有效性的实验结果。实验工作包括五个在之前的测试中具有相同的几何形状和材料性质但在弯曲、剪切和扭转的不同荷载组合的条件下已经大规模严重破坏混凝土方柱。在三天的时间内,要修复每一个破坏的立柱并且和与之对应的原始立柱在同样的荷载组合下重新测试。用最快速的修复砂浆来填充破坏脱落的松散混凝土。对损坏的钢筋没有任何处理,纵向和横向的CFRP的外部连接到立柱预定的表面来恢复其强度。与对应的原始立柱的表现相比,对已修复的立柱所测得的数据进行分析来研究其性能。得出的结论是,该技术对于修复由于混凝土和横向钢筋损伤而受到严重破坏的立柱是有效的。对于那些纵向钢筋受到严重损伤的立柱,如果已损伤的纵向钢筋能够提供一定的抗拉强度,或者是破坏发生在可以保障纵向CFRP强度的区域,那么这种技术也是行之有效的。
关键词:碳化纤维强化塑料合成物,周期荷载,快速修复,钢筋混凝土立柱,严重破坏。
1、引言
在地震中桥梁结构的破坏可能带来巨大的社会和经济后果,特别是对于那些在应急救援和其他有重要功能的关键线路上建立的桥梁而言。比如被ATC-18(1997)定义为“重要”的桥梁,ATC-18明确规定上述“重要”的桥梁必须在发生地震后的三天之内能够完全通行。为了在被影响的区域恢复交通要道的通行,需要快读而有效的修复方法来处理不同程度的损伤破坏从而使得对社会的造成影响最小化。
多年的研究已经证明外贴纤维强化塑料在加固与修复钢筋混凝土立柱时的有效性。其中多数的研究聚焦在对于结构中各种类型的构成的弯曲或剪切加固与修复应用或者就立柱而言形成约束。在关于修复的研究中,许多都是集中在只有轻微或者中等程度损伤的立柱中,它们都可以用混凝土、钢筋或者玻璃钢护套来恢复其强度和变形(Elkin等,1999;Stoppenhagen等,1995;Chai等,1991;Saadatmanesh等,1997;Cheng等,2003)。然而只有少数的研究是关注在修复严重破坏的可塑钢筋混凝土桥柱上,特别是那些有被压弯或者折断的纵向钢筋的桥柱(Elkin等,1999;Cheng等,2003)。尽管这些技术已经证明在恢复桥柱强度和变形的问题上有成效,但是它们都没有强调快速修复和考虑桥梁能够及时重新通行的问题。为了解决这个问题,Vosooghi和Saiidi(Vosooghi和Saiidi, 2012)最近对已损坏的桥梁立柱用CFRP进行快速修复提供了一些参考。他们的研究主要围绕在没有破裂的纵向钢筋的圆形钢筋混凝土立柱承受弯曲和剪切荷载作用的情况。
在一次地震中,桥柱可能承受复杂的轴向剪切、弯曲和扭转荷载的作用。正如Prakash等(2012)所提出的,荷载之间的相互作用会影响破坏的位置的类型。因此,对那些由于组合荷载作用而产生不同破坏情况的立柱制定维修技术是很有趣和有意义的。
本研究是一个带有判别所提出的在地震发生后用外贴的CFRP来快速修复不同破坏情况下严重损伤的钢筋混凝土桥柱的应急服务的技术可行性和有效性的目标的概念证明。正如ATC-18(1997)和其他研究人员(Vosooghi 等,2008)定义的,“快速”这个词指的是一个三天的周期。这份研究将会填补书面上有关扭转荷载作用效果的结论以及不同损伤程度的空白并经会给未来这个领域的研究提供参考和指明方向。这个实验报告包括了五个在之前的实验中(Prakash等,2012)承受轴向、剪切、弯曲和扭转等不同荷载组合作用下被破坏的半方桥柱。经历了之前的试验后,桥柱出现了不同情况的严重破坏。每个立柱在三天的周期之内被修复过来并且在第四天的时候重新进行在像原来立柱承受的组合荷载作用下的测试。通过比较同样条件下原始立柱的表现来评估修复立柱的成效。此次研究中样本的大部分的性质是适合于在实践中所用的修复技术的可构造性的评估。
2、原始立柱
五个方形的钢筋混凝土立柱在之前的试验中已被测试,每一个都具有名义上相同的几何和材料性质。其中有1/2桥柱是基于CALTRANS (2004)和ACI 318 (2008)地震规范而设计的。把立柱样本模拟成一个悬臂结构,并且纵横比(H/B)是6,其中H和B分别代表了立柱的高度和其横截面宽度。图1显示的是立柱的几何尺寸和配筋情况。立柱横截面的边长是22英寸(560毫米)四个角分别配有九号(直径29毫米)的损伤筋,在中间配有8根八号(直径25毫米)钢筋,立柱的纵向配筋率为2.13%。箍筋是由四边形和八边形的三号(直径10毫米)损坏钢筋组成,其组成的正方形边长为3.25英寸(82毫米),立柱的横向配筋率为1.32%。八号(直径25毫米)纵向钢筋所测的屈服强度为76ksi(574MPa),九号(直径29毫米)纵向钢筋的为67ksi(462MPa)。而箍筋的屈服强度为74ksi(510MPa)。钢筋条的屈服强度是根据ASTMA 370 (2012)来测出结果的。混凝土28天目标圆柱体抗压强度为5000psi(34MPa)。Prakash等(2012)提供所测混凝土其他性质的信息。
之前的研究探讨的是关于在不同的荷载(包括扭转)组合作用下方形钢筋混凝土桥柱的震后表现。其主要聚焦在弯曲和扭转的相互作用,并且主要变化是扭弯矩之比(T/M)。五个立柱都在周期的侧向荷载以及大约150kips(667KN)的持续轴向荷载来模拟上部结构传来的横载。立柱1承受的是周期性非轴向的悬臂弯矩和剪力(T/M=0),另外还有持续的轴向荷载。立柱2、3和4承受的是持续的轴向荷载以及周期性非轴向悬臂弯曲、剪切和扭转的组合作用效应,其各自的扭弯矩之比(T/M)为0.2、0.4和0.6。立柱5则是在纯扭转(T/M=infin;)以及持续轴向荷载下进行测试。
3、立柱破坏情况
经过了之前的测试之后,由于不同的周期性轴向荷载组合效应(T/M),立柱都在不同的破坏条件下产生了严重的损伤。根据目测情况和实测反馈数据来划分总体的破坏情况。依据之前的所做的工作(Lehman等,2001),任何可视的核心混凝土压碎、纵向钢筋变形、纵向或横向钢筋折断都被归为严重损坏。如果存在一个明显的永久变形,钢筋已经屈服,或者主要的混凝土剥落已经发生(Rojahn 等,1997),那么根据ATC 32标准则可认为破坏时显著的。在这篇论文中,当我
图1 立柱的几何尺寸和配筋情况
图2 原始立柱在之前测试中的损伤情况
们谈到立柱损伤时,“显著”和“严重”将会交替使用。
在图2中所展示的经过原始测试的被破坏的立柱,表现出了不同的可观察到的破坏程度以及塑形铰位置。一般而言,破坏区域会沿着立柱高度延伸,并且塑形铰位置也会随着不断升高的扭弯矩之比而从底部转移。例如在周期性剪力和弯矩作用下的立柱1,在立柱底部以上25英寸(635毫米)的混凝土表面开始剥落,其塑形铰位置也大约在高于立柱底部10英寸(260毫米)的地方。承受周期性扭矩的立柱5,表现出几乎延伸到整个立柱高度的破坏,并且在高于柱底64英寸(1620毫米)处的横截面上的核心混凝土被压碎。由于在低扭弯矩比(T/Mlt;0.5)的立柱主要承受弯曲变形的性能,对于立柱1、2和3的破坏主要集中在柱底最大弯矩处附近。高扭弯矩比(T/Mgt;0.5)的立柱4和5则是主要承受扭转变形,在图2中表现出了更高的塑性铰位置和更大范围的破坏。
试验中所测得的数据用来检测荷载—变形反应变化以及判断钢筋屈服的位置。在试验完成时,荷载—变形反应表明每个立柱的刚度显著减小,且其残余强度也小于峰值荷载的50%。一些立柱更是对于所施加的荷在上(Prakash等,2012)没有任何的抵抗能力而遭到完全破坏。
表1 原始立柱损伤数据
立柱 |
T/M |
混凝土破坏 |
钢筋条破坏 |
||||
Longitudinal |
Tiesa |
||||||
Cover spall |
Core crush |
Yield |
Buckle |
Fracture |
|||
Column 1 |
0 |
25 in. (635 mm) above column base |
10 in. (260 mm) above column base |
All bars |
All bars, 10 in. (260 mm) above column base |
2 bars; 10 in. (260 mm) above column base (see Fig. 1) |
4 ties |
Column 2 |
0.2 |
37 in. (950 mm) above column base |
20 in. (500 mm) above column base |
All bars |
10 bars, 20 in. (500 mm) above column base |
None |
3 ties |
Column 3 |
0.4 |
58 in. (1,470 mm) above column base |
30 in. (760 mm) above column base |
All bars |
10 bars, 30 in. (760 mm) above column base |
None |
1 tie |
Column 4 |
0.6 |
94 in. (2,380 mm) above column base |
40 in. (1,020 mm) above column base |
All bars |
10 bars, 40 in. (1,020 mm) above column base |
None |
1 tie |
Column 5 |
infin; |
120 in. (3,050 mm) above column base |
64 in. (1,620 mm) above column base |
2 bars |
None |
None |
0 tie |
表1显示的是对原始立柱破坏情况的详细描述。每个立柱所遭受的破坏包括混凝土破裂、表面混凝土剥落、核心混凝土压碎以及纵向钢筋的屈服。在有的情况下,由于屈服而使箍筋破坏,从而使箍筋末端的钩子失去原本的功能变直。此外,1-4号立柱中的纵向钢筋条被压弯,1号立柱柱底核心区域的西北和东南角附近的两根纵向钢筋条断裂(见图1)。
4、破坏立柱的快速修复
4.1、修复材料
由于快速修复的短时间约束,被选中的使用材料需要具有易于安装、与其他材料兼容以及在规定时间内能达到预定的强度的特性。这次研究中所使用的是一种快速修复砂浆和单向性的CFRP强化系统。修复砂浆用来填补脱落的破坏混凝土,CFRP强化系统用来补偿在前期立柱试验中由于材料退化而损失的强度。
修复砂浆是具有高粘合强度、高早期强度和自填充性质的微型补偿收缩混凝土。表2显示的是制造商提供的材料性质。在同一天浇筑一个2英寸(51毫米)的立方体来替代脱落的混凝土从而测定抗压强度。之后分别在浇筑后一天、试验当天和浇筑后28天籁测量立柱的抗压强度。每个立柱在试验当天测出来修复砂浆的抗压强度大约是5ksi(28MPa)。
表2 修复
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[150002],资料为PDF文档或Word文档,PDF文档可免费转换为Word
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。