数据仓库外文翻译资料

 2023-03-07 18:04:49

DATA WAREHOUSE

Data warehousing provides architectures and tools for business executives to systematically organize, understand, and use their data to make strategic decisions. A large number of organizations have found that data warehouse systems are valuable tools in todays competitive, fast evolving world. In the last several years, many firms have spent millions of dollars in building enterprise-wide data warehouses. Many people feel that with competition mounting in every industry, data warehousing is the latest must-have marketing weapon —— a way to keep customers by learning more about their needs. “So', you may ask, full of intrigue, “what exactly is a data warehouse?' Data warehouses have been defined in many ways, making it difficult to formulate a rigorous definition. Loosely speaking, a data warehouse refers to a database that is maintained separately from an organizations operational databases. Data warehouse systems allow for the integration of a variety of application systems. They support information processing by providing a solid platform of consolidated, historical data for analysis. According to W. H. Inmon, a leading architect in the construction of data warehouse systems, “a data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of managements decision making process.' This short, but comprehensive definition presents the major features of a data warehouse. The four keywords, subject-oriented, integrated, time-variant, and nonvolatile, distinguish data warehouses from other data repository systems, such as relational database systems, transaction processing systems, and file systems. Lets take a closer look at each of these key features. (1).Subject-oriented: A data warehouse is organized around major subjects, such as customer, vendor, product, and sales. Rather than concentrating on the day-to-day operations and transaction processing of an organization, a data warehouse focuses on the modeling and analysis of data for decision makers. Hence, data warehouses typically provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process. (2) Integrated: A data warehouse is usually constructed by integrating multiple heterogeneous sources, such as relational databases, flat files, and on-line transaction records. Data cleaning and data integration techniques are applied to ensure consistency in naming conventions, encoding structures, attribute measures, and so on. (3).Time-variant: Data are stored to provide information from a historical perspective (e.g., the past 5-10 years). Every key structure in the data warehouse contains, either implicitly or explicitly, an element of time. (4)Nonvolatile: A data warehouse is always a physically separate store of data transformed from the application data found in the operational environment. Due to this separation, a data warehouse does not require transaction processing, recovery, and concurrency control mechanisms. It usually requires only two operations in data accessing: initial loading of data and access of data. In sum, a data warehouse is a semantically consistent data store that serves as a physical implementation of a decision support data model and stores the information on which an enterprise needs to make strategic decisions. A data warehouse is also often viewed as an architecture, constructed by integrating data from multiple heterogeneous sources to support structured and/or ad hoc queries, analytical reporting, and decision making. “OK', you now ask, “what, then, is data warehousing?' Based on the above, we view data warehousing as the process of constructing and using data warehouses. The construction of a data warehouse requires data integration, data cleaning, and data consolidation. The utilization of a data warehouse often necessitates a collection of decision support technologies. This allows “knowledge workers' (e.g., managers, analysts, and executives) to use the warehouse to quickly and conveniently obtain an overview of the data, and to make sound decisions based on information in the warehouse. Some authors use the term “data warehousing' to refer only to the process of data warehouse construction, while the term warehouse DBMS is used to refer to the management and utilization of data warehouses. We will not make this distinction here. “How are organizations using the information from data warehouses?' Many organizations are using this information to support business decision making activities, including: (1) increasing customer focus, which includes the analysis of customer buying patterns (such as buying preference, buying time, budget cycles, and appetites for spending), (2) repositioning products and managing product portfolios by comparing the performance of sales by quarter, by year, and by geographic regions, in order to fine-tune production strategies。 (3) analyzing operations and looking for sources of profit, (4) managing the customer relationships, making environmental corrections, and managing the cost of corporate assets. Data warehousing is also very useful from the point of view of heterogeneous database integration. Many organizations typically collect diverse kinds of data and maintain large databases from multiple, heterogeneous, autonomous, and distributed information sources. To integrate such data, and provide easy and efficient access to it is highly desirable, yet challenging. Much effort has been spent in the database industry and research community towards achieving this goal. The traditional database approach to heterogeneous database integration is to build wrappers and integrators (or mediators) on top of multiple, heterogeneous databases. A variety of data joiner and data blade products belong to this category. When a query is posed to a client site, a metadata dictionary is used to translate the query into queries appropriate for th

剩余内容已隐藏,支付完成后下载完整资料


DATA WAREHOUSE

Data warehousing provides architectures and tools for business executives to systematically organize, understand, and use their data to make strategic decisions. A large number of organizations have found that data warehouse systems are valuable tools in todays competitive, fast evolving world. In the last several years, many firms have spent millions of dollars in building enterprise-wide data warehouses. Many people feel that with competition mounting in every industry, data warehousing is the latest must-have marketing weapon —— a way to keep customers by learning more about their needs. “So', you may ask, full of intrigue, “what exactly is a data warehouse?' Data warehouses have been defined in many ways, making it difficult to formulate a rigorous definition. Loosely speaking, a data warehouse refers to a database that is maintained separately from an organizations operational databases. Data warehouse systems allow for the integration of a variety of application systems. They support information processing by providing a solid platform of consolidated, historical data for analysis. According to W. H. Inmon, a leading architect in the construction of data warehouse systems, “a data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of managements decision making process.' This short, but comprehensive definition presents the major features of a data warehouse. The four keywords, subject-oriented, integrated, time-variant, and nonvolatile, distinguish data warehouses from other data repository systems, such as relational database systems, transaction processing systems, and file systems. Lets take a closer look at each of these key features. (1).Subject-oriented: A data warehouse is organized around major subjects, such as customer, vendor, product, and sales. Rather than concentrating on the day-to-day operations and transaction processing of an organization, a data warehouse focuses on the modeling and analysis of data for decision makers. Hence, data warehouses typically provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process. (2) Integrated: A data warehouse is usually constructed by integrating multiple heterogeneous sources, such as relational databases, flat files, and on-line transaction records. Data cleaning and data integration techniques are applied to ensure consistency in naming conventions, encoding structures, attribute measures, and so on. (3).Time-variant: Data are stored to provide information from a historical perspective (e.g., the past 5-10 years). Every key structure in the data warehouse contains, either implicitly or explicitly, an element of time. (4)Nonvolatile: A data warehouse is always a physically separate store of data transformed from the application data found in the operational environment. Due to this separation, a data warehouse does not require transaction processing, recovery, and concurrency control mechanisms. It usually requires only two operations in data accessing: initial loading of data and access of data. In sum, a data warehouse is a semantically consistent data store that serves as a physical implementation of a decision support data model and stores the information on which an enterprise needs to make strategic decisions. A data warehouse is also often viewed as an architecture, constructed by integrating data from multiple heterogeneous sources to support structured and/or ad hoc queries, analytical reporting, and decision making. “OK', you now ask, “what, then, is data warehousing?' Based on the above, we view data warehousing as the process of constructing and using data warehouses. The construction of a data warehouse requires data integration, data cleaning, and data consolidation. The utilization of a data warehouse often necessitates a collection of decision support technologies. This allows “knowledge workers' (e.g., managers, analysts, and executives) to use the warehouse to quickly and conveniently obtain an overview of the data, and to make sound decisions based on information in the warehouse. Some authors use the term “data warehousing' to refer only to the process of data warehouse construction, while the term warehouse DBMS is used to refer to the management and utilization of data warehouses. We will not make this distinction here. “How are organizations using the information from data warehouses?' Many organizations are using this information to support business decision making activities, including: (1) increasing customer focus, which includes the analysis of customer buying patterns (such as buying preference, buying time, budget cycles, and appetites for spending), (2) repositioning products and managing product portfolios by comparing the performance of sales by quarter, by year, and by geographic regions, in order to fine-tune production strategies。 (3) analyzing operations and looking for sources of profit, (4) managing the customer relationships, making environmental corrections, and managing the cost of corporate assets. Data warehousing is also very useful from the point of view of heterogeneous database integration. Many organizations typically collect diverse kinds of data and maintain large databases from multiple, heterogeneous, autonomous, and distributed information sources. To integrate such data, and provide easy and efficient access to it is highly desirable, yet challenging. Much effort has been spent in the database industry and research community towards achieving this goal. The traditional database approach to heterogeneous database integration is to build wrappers and integrators (or mediators) on top of multiple, heterogeneous databases. A variety of data joiner and data blade products belong to this category. When a query is posed to a client site, a metadata dictionary is used to translate the query into queries appropriate for th

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[498202],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。