Digital Circuit Learning System Based on Unity3D
Yaxin Liang
School of Information Engineering, Wuhan University of Technology, Wuhan, China
Abstract
As a new technology, virtual reality technology development has been the concern of researchers in different fields, and its application in the field of teaching has been the focus of people. On one hand, the virtual reality technology itself has unique charm and feature, which has attracted a large number of experts and scholars to explore its application in education. On the other hand, the teaching of compulsory courses in universities is faced with the shortage of teaching resources and the low enthusiasm of students.Especially in the experiment teaching process, circuit experiment plays an important role in understanding the theoretical knowledge, at the same time, let the student to independently explore unrestrictedly by time and resources as well as the important direction of future development. From this perspective, this article summarizes the development of virtual reality technology at home and abroad in todayrsquo;s teaching system, with the help of unity3D and rhino, the simple teaching system is achieved.
I take “Digital Circuit Technology” as the main body, and the whole design is also based on it. Through the simulation of the virtual classroom, virtual experiment box, typical chip and other structures, the learning system makes students to choose the experimental time and place freely. At the same time, students can strengthen the ability of innovation and logical thinking, start a vivid, strong interactive, efficient teaching mode. In unity3D, I achieved many interactive functions such as interface jump, output control with the development language C#.
Keywords
Unity3D, 3D Modeling, Digital Circuit Technology, Learning System
1.Introduction
Education Innovation
With the wave of informationization sweeping into all areas of society, the education system and model have also been greatly affected, and the main position of students in learning has greatly improved. However, in actual teaching, various surveys show the limitations of multimedia in presenting information. If the level of students is uneven, the teacher cannot balance the speed at which each student browses and understands the knowledge points. Therefore, the teaching progress cannot meet the needs of some studentsrsquo; demand. Especially in the subject teaching that relies on multimedia comparison, learners often learn in a passive learning environment, can only follow the teacher#39;s progress, watch the teacher#39;s operation, it is difficult to achieve independent thinking and exploration, not really integrated into the fun and interesting In the classroom.
At the same time, the rapid development of technology has led to the widely use of virtual reality (VR) technology in the field of education. Many experts believe that the integration of virtual reality technology into teaching is a milestone in the development of information technology [1]. It not only overcomes some of the shortcomings of multimedia technology in the teaching process, but also changes the single study atmosphere. Students understand the meaning of abstract knowledge and enjoy a free, open and enjoyable classroom through the interaction with virtual scenes.
Learning Object Selection and Overall Design
Nowadays, the application of virtual reality in teaching has spread to history, biology, chemistry and other disciplines, but the simulation software of circuit teaching has always stayed at the stage of two-dimensional simulation [2]. “Digital Electronic Technology Foundation” is an important course in the electronic-majors. This course is a compulsory course of entry-level technology. It has its own system and characteristics—not only deep theory, but also very strong practical [3]. Digital circuits involve a wide range of topics, in addition to playing a pivotal role in the learning of electrical and electronic information, and the widespread use of this technology can be seen everywhere in daily life.
Due to the importance of the course, almost all electronic-related majors in universities have opened Digital Electronics and its experimental courses. Teaching resources and laboratory resources are relatively strained. Because of a limited classroom time, teachers may not be able to balance all students, leading to difficulties for students who have no basis in logic circuits to learn. Another feature of Digital Electronics Technology, extremely practical, cannot be fully reflected due to limited laboratory resources, or because the laboratory schedule is too full, students cannot have enough time to verify theoretical knowledge; and many unnecessary troubles are caused by the aging of the equipment.
Based on the above situation and combining the advantages of virtual reality technology, this paper takes 'Digital Electronic Technology Foundation' as the learning object to builds a three-dimensional virtual teaching system. This design takes the basic course in the Digital Circuit as the core, and selects the representative “combination logic circuit” and “D flip-flop” as the learning content, corresponding to the half adder, full adder, full reducer, and comprehensive experiment of four people competition answer device. The teaching system consists of three modules: theoretical learning module, experimental module, and test module. This paper mainly uses unity3D to achieve environment construction, uses C# script to achieve specific interactive functions, and uses the industrial modeling software Rhino to build a complex experiment box model. The functions of the virtual teaching system mainly include: virtual classroom environment, experiment box function simulation, connection control, power switch, chip function prompt and simple test function.
Designing a complete virtual teaching system
剩余内容已隐藏,支付完成后下载完整资料
基于unity3D的数字电路学习系统
梁亚星
中国,武汉,武汉理工大学,信息工程学院
摘要
虚拟现实技术作为一种新技术,一直受到不同领域研究者的关注,其在教学领域的应用一直是人们关注的焦点。一方面,虚拟现实技术本身具有独特的魅力和特征,吸引了大量的专家学者探索其在教育中的应用。另一方面,高校必修课教学面临教学资源短缺,学生积极性低的问题。特别是在实验教学过程中,电路实验对理解理论知识起着重要作用,同时让学生不受时间和资源的不受限制地探索,也是未来发展的重要方向。从这个角度出发,本文总结了国内外虚拟现实技术在当今教学系统中的发展,借助unity3D和rhino,实现了简单的教学系统。我以“数字电路技术”为主体,整个设计也以此为基础。通过虚拟教室、虚拟实验箱、典型芯片等结构的仿真,学习系统使学生自由选择实验时间和地点。同时,学生可以加强创新能力和逻辑思维,开始生动,强大的互动,高效的教学模式。在unity3D中,我用开发语言C#实现了许多交互式功能,如界面跳转,输出控制。
关键字
Unity3D,3D建模,数字电路技术,学习系统
- 介绍
教育创新
随着信息化浪潮席卷了社会的所有领域,教育体制和教育模式也受到了很大的影响,学生在学习中的主体地位也有了很大的提高。然而,在实际教学中,各种调查都显示出多媒体在呈现信息方面的局限性。如果学生水平参差不齐,老师就不能平衡每个学生学习和理解知识点的速度。因此,教学进度不能满足部分学生的需求。特别是在依靠多媒体比较的学科教学中,学习者经常在被动的学习环境中学习,只能跟随老师的进步,观察老师的操作,难以实现独立思考和探索,不能真正融入课堂的趣味性。
与此同时,技术的飞速发展导致虚拟现实(VR)技术在教育领域的广泛使用。许多专家认为,虚拟现实技术融入教学是信息技术发展的一个里程碑【1】。它不仅弥补了多媒体技术在教学过程中的一些不足,也改变了单一的学习氛围。学生通过与虚拟场景互动,理解抽象知识的含义,享受自由、开放、愉快的课堂。
学习对象选择和总体设计
如今,虚拟现实在教学中的应用已经扩展到历史、生物、化学等学科,而电路教学仿真软件一直停留在二维仿真的阶段【2】。“数字电子技术基础”是电子专业的一门重要课程,这门课是初级技术必修课。它有自己的系统和特点--不仅有深刻的理论,而且有很强的实践性【3】。数字电路涉及广泛的课题,除了在电气和电子信息方面的学习中起到关键作用,这一技术的广泛应用在日常生活中随处可见。
由于这门课程的重要性,大学几乎所有的电子相关专业都开设了数字电子学及其实验课程。教学资源和实验资源相对紧张。由于课堂时间有限,老师可能无法平衡所有学生,给没有逻辑基础的学生带来学习困难。数字电子技术的另一个非常实用的特点不能完全反映出来,由于实验室资源有限,或者由于实验室时间表太满,学生不能有足够的时间来验证理论知识,以及由于设备老化引起的许多不必要的麻烦。
基于以上情况,结合虚拟现实技术的优势,本文以“数字电子技术基础”作为学习对象来创造一个三维虚拟教学系统。这个设计以数字电路的基础课程为核心,选择具有代表性的“组合逻辑电路”和“D触发器”作为学习内容,对应半加法器、全加法器、全减器和四个人竞争应答装置的综合实验。本教学系统由三个模块组成:理论学习模块、实验模块和测试模块。本文主要使用unity3D实现环境构建,用C#脚本实现具体的交互功能,并且使用工业建模软件Rhino构建复杂的实验箱模型。虚拟教学系统的作用主要包括:虚拟教室环境、实验箱功能仿真、连接控制、电源开关、芯片功能提示和简单测试功能。
设计完整的虚拟教学系统需要以下四个方面:完备的功能、良好的内部结构、真实的实验原理和正确的仿真现象【4】。为此,需要大量的初步工作,开发过程和顺序如图1所示。
图1. 3D虚拟教学系统开发过程
模型构建
这种设计分离了不需要与需要交互的部分交互的静态部分。静态部分是教室环境,交互部分是实验电路箱。由于教室的模型部分具有许多在线造型和模型材料,而且精度要求不是太高,它是由unity3D所提供的建模功能来完成的,可以节省许多存储空间,极大地方便了操作,并且不用担心模型导入时的丢失问题。电路箱模型的实验部分是本设计所独有的,没有在线材料,结构复杂,对象众多,因此专业的工业模型软件Rhino用来建模。
使用unity3D构建课堂环境时,我们需要付费注意光源的选择和材料的均匀性。由于教学系统只涉及室内,可以选择点光源和聚光灯来更好地恢复场景[5]。确定光源后,为了节省资源和方便修改,我们可以使用统一3D的烘焙功能来修复阴影,使教室更加真实[6]。结构的结果如图2所示。
图2.虚拟教室环境
图3.数字电路实验框
实验箱是整个实验操作的中心,也是该建模的重点和难点。该设计使用Rhino强大的表面建模功能来设计MY-226E数字测试盒。电测试盒包含各种实验组件。这些模型具有不同的形状,不同的材料和不同的颜色。创建渲染需要不同的方法。同时,模型材料的选择也是必不可少的,例如LED灯被设置为具有漫反射性的透明玻璃材料,并且开关和盒子部分由不透水的金属材料制成,因此整个罐头更好地恢复真实对象[7]。盒子模型如图3所示。
与实验盒不同,实验芯片必须确保准确性,同时美观。本实验涉及的功能芯片分为十四个引脚和十六个引脚,包括74LS175同步四D触发器,74LS04逆变器,74LS08双输入NAND门芯片,74LS20四输入NAND门芯片等,测试芯片引脚和线的排列和位置是根据数据缩放设计的。实际芯片规模,如图4所示。值得注意的是,每个端口引脚标签名称在建模中都有区别。在后面的电路连接中,每个模型的名称用于获得该对。标识并命名对象,因此对象的名称必须能够唯一地标识对象。
3. 虚拟教学系统功能实现
该设计的主要功能如图5所示。关键点和难点在于实验箱的功能模拟。下面逐个描述每个功能的实现。
3.1. 学习模块
Unity3d自己的第一人称控制器组件可以轻松实现第一人称视角漫游教室[8]。将第一人称控制器拖到“层次”面板中,然后在场景中创建一个胶囊对象,并将一个摄像头连接到胶囊体上,将其放在地形上,然后传递W,S,A,D(或键盘方向键)控制人物移动的方向。通过移动鼠标环顾教室,按空格键跳转[9]。这是用户进入学习系统的第一个场景。Firstperson漫游有助于改善沉浸式体验,并大大提高学生的学习兴趣。
课程可以通过各种方式学习,包括视频,PowerPoint或其他形式。考虑到现在大多数大学都是用PowerPoint解释的,因为PowerPoint有更多的资源,并且上传者可以方便地修改和添加学习内容,这个设计以PowerPoint学习为例。当用户单击“开始学习”时,将显示所选的课程名称。该课程由以下Ray()函数选择,其中0对应于鼠标左键,1对应于右按钮,2对应于中间按钮[10]。以研究1的研究为例:
图4.芯片建模
图5.功能设计
如果(Input.GetMouseButtonDown(0))//监视鼠标按钮
按if(Input.GetMouseButtonDown(0)) //按下鼠标按
钮
{打印(1);
射线 = Camera.main.ScreenPointToRay (输入. mousesepace);
//创建一条光线
RaycastHit命中;
//在点击中保存光线碰撞的对象信息if
(hit.transform.gameObject.name
==“study1”)
//检测点击“study1”
{索引 = 0;
图像. 精灵 =
studyimage1[index];选择图像
= 学习图像 1;
image.gameObject.SetActive(真);
//显示课程幻灯片的第一张图片
ClosePlayer();} //关闭第一个人控制器并进入学习完所有
图片播放后,选择返回或进入实验:public void Return()
{gotoButton.SetActive
(假);image.gameObject.SetActive(假);//关闭
PowerPoint OpenPlayer();} //打开第一个人控制器
公共空白 GotoNextScene ()
{SceneManager.LoadScene(“Scene2”);} //进入实验场景
3.2. 电路盒初始化
电路盒的初始化包括:1)定义AND,OR和NOT-基本算术符号,以准备芯片的后续实现;2)芯片引脚设置,根据实际情况,每个芯片只有正确连接到电源和地线才能正常工作;3)定义基本连接规则,例如每个LED灯只能对应对于一个输出,一个开关可以对应多个输入,并且不能重复连接。通过检查键和值来实现引脚设置。可以通过遍历属性值来实现线路检查。
具体脚本如下:
公共静态芯片组杰克运算符 (芯片杰克数据 1, 芯片杰克数据 2)
{if(data1.data == 1 ||
data2.data == 1)返回新的
ChipJack {data = 1};返回新的
ChipJack {data = 0}}
//定义“和”运算符
公共虚拟空白 checkcanuse ()
{isCanUse = false;假的; 假的; 假的; 假的; 假的, 假的, 假的,
假的, 假的, 假的, 假的, 假的, 假的, 假的, 假的
//初始化
foreach(在CircuitBox.Instance.connectedJack中的var
jack)
//改变芯片孔并逐一判断它们
{如果 (插孔。键 = = 正输入和插孔。值 = = 正)
{ispositive = true;} //电源线连接正确,如果
(jack.Key == negativeInput amp;amp; jack.Value == negative)
{isnegative = true;} //如果(ispositive amp;amp;
isnegative)正确连接地线
正则为真;
//芯片可以正常工作
如果 (现在选择!= 选择插孔)
//如果两个选定的引脚相同
{如果 (最大选择, jau。
//确定是否全部输入
{OpenTip(“不允许此连接线!”);}
3.3. 芯片功能实现
通过基本运算符和芯片引脚设置的定义,组合栅极芯片的实现变得非常容易。例如,74LS20的输入和输出关系可以直接用表达式表示:
chipoutput [0] .data =(!(input [0] * input [1] * input [2] *
input [3]))。data;
对于涉及D触发器的74LS175,我们需要InvokeRepeating()函数来
模拟时钟信号,并且时钟信号可以看作输入条件[11]。
如果 (clockinputdata = = 0 amp; input[2].data = = 1)
{isGetUp = true;} //判断上升沿
if(isGetUp)
{chipoutput [0] .data = input [1] .data;
chipoutput [1] .data =(!input [1])。data;}
//向上边缘赋值
其他
{chipoutput[0].data = olddata1[i]; chipoutput[1].data = olddata2[i]; }
//否则保持原始数据不变
3.4. 次要功能
根据作者的观察和日常实验经验,该实验箱设计有两个附加功能:1)为了方便实验者选择芯片,通过在每个芯片上放置一个屏幕控制器脚本,可以实现实验者点击某个芯片。相应的引脚图可以出现在屏幕上。这样可以节省用户查找数据的时间,从而提高学习效率。2)为了培养学生断电操作的良好习惯,只有在点击“开机”时才读取所有输入并具有相应的输出。实现代码如下
公共类ScreenController:MonoBehaviour
{公共纹理 tex;// tex是与芯片公共材料垫相对应的引脚
图;// mat是显示材料
void OnMouseDown()//鼠标按下
{mat.mainTexture = tex;}} //将相应的引脚图分配给显示器public
void OpenPower()//打开电源
{取消调用 ('检查答案');调用重复 ('检查答案', 0,
0.002f);}
//由于涉及定时电路,每个时钟周期检查输入
3.5. 测试模块
测试模块以五个多项选择题为例,采用最简单的循环算法来判断是非
{int i = 0;
(int j = 0; j lt; 切换。长度;j ) 剩余内容已隐藏,支付完成后下载完整资料
资料编号:[429144],资料为PDF文档或Word文档,PDF文档可免费转换为Word
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。