金刚石压砧中的少数层MoS2的压力场效应晶体管外文翻译资料

 2022-03-03 22:33:27

英语原文共 6 页,剩余内容已隐藏,支付完成后下载完整资料


附录A 外文参考文献(译文)

金刚石压砧中的少数层MoS2的压力场效应晶体管

Yabin Chen,dagger; Feng Ke,Dagger; Penghong Ci,dagger; Changhyun Ko,dagger; Taegyun Park,dagger; Sahar Saremi,dagger; Huili Liu,dagger;,sect; Yeonbae Lee,sect; Joonki Suh,dagger; Lane W. Martin,dagger; Joel W. Ager,dagger;,sect; Bin Chen,Dagger; and Junqiao Wu*,dagger;,sect;

dagger;Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States

Dagger;Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China

sect;Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

摘要:利用金刚石压砧(DAC)施加的静水压改变材料的晶格自由度来调节材料的物理性能。电场可以通过例如场效应晶体管的构造独立地调节功能材料电子自由度。将这两种正交方法结合起来,可以发现超出已知相空间的新的物理性质和相位。然而,这样的实验在技术上是有挑战性的,没有被证明。在此,我们报告了一种可行的策略,通过在金刚石立方体上刻划纳米器件,在DAC中制备和测量场效应晶体管。采用少层MoS2和BN作为沟道半导体和介电层,在DAC中制备了多端场效应晶体管。结果表明,压力能显著提高MoS2的迁移率、电导、载流子浓度和接触电导。我们期望这一方法能够以前所未有的方式探索耦合机械-静电调制下材料的新相和新性质。

关键词 静水压,金刚石压砧,MoS2,h-BN介质,场效应晶体管等。

参考文献与链接

  1. Wang, H. T.; Yuan, H. T.; Hong, S. S.; Li, Y. B.; Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcoge-nides. Chem. Soc. Rev. 2015, 44 (9), 2664minus;2680.
  2. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9 (5), 372minus;377.
  3. Chen, Y. B.; Zhang, S.; Gao, W. W.; Ke, F.; Yan, J. Y.; Saha, B.; Ko, C. H.; Suh, J.; Chen, B.; Ager, J. W.; et al. Pressure-induced structural transition of CdxZn1 xO alloys. Appl. Phys. Lett. 2016, 108 (15), 152105minus;152108.
  4. Ye, Y.; Wong, Z. J.; Lu, X. F.; Ni, X. J.; Zhu, H. Y.; Chen, X. H.; Wang, Y.; Zhang, X. Monolayer excitonic laser. Nat. Photonics 2015, 9 (11), 733minus;737.
  5. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13 (8), 3626minus;3630.
  6. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10 (4), 216minus;226.
  7. Costanzo, D.; Jo, S.; Berger, H.; Morpurgo, A. F. Gate-induced superconductivity in atomically thin MoS2 crystals. Nat. Nanotechnol. 2016, 11 (4), 339minus;344.
  8. Biscaras, J.; Chen, Z. S.; Paradisi, A.; Shukla, A. Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide. Nat. Commun. 2015, 6, 8826.
  9. Yu, Y. J.; Yang, F. Y.; Lu, X. F.; Yan, Y. J.; Cho, Y. H.; Ma, L. G.; Niu, X. H.; Kim, S.; Son, Y. W.; Feng, D. L.; et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 2015, 10 (3), 270minus;276.
  10. Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.; Ksenofontov, V.; Shylin, S. I. Conventional superconductivity at 203 K at high pressures in the sulfur hydride system. Nature 2015, 525 (7567), 73minus;77.
  11. Dalladay-Simpson, P.; Howie, R. T.; Gregoryanz, E. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature 2016, 529 (7584), 63minus;67.
  12. Fan, W.; Zhu, X.; Ke, F.; Chen, Y. B.; Dong, K. C.; Ji, J.; Chen, B.; Tongay, S.; Ager, J. W.; Liu, K.; et al. Vibrational spectrum renormalization by enforced coupling across the van der Waals gap between MoS2 and WS2 monolayers. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 92 (24), 241408.
  13. Nayak, A. P.; Bhattacharyya, S.; Zhu, J.; Liu, J.; Wu, X.; Pandey, T.; Jin, C. Q.; Singh, A. K.; Akinwande, D.; Lin, J. F. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 2014, 5, 3731minus;3739.
  14. Chi, Z. H.; Zhao, X. M.; Zhang, H.; Goncharov, A. F.; Lobanov, S. S.; Kagayama, T.; Sakata, M.; Chen, X. J. Pressure-induced metallization of molybdenum disulfide. Phys. Rev. Lett. 2014, 113 (3), 036802.
  15. Chi, Z.; Yen, F.; Peng, F.; Zhu, J.; Zhang, Y.; Chen, X.; Yang, Z.; Liu, X.; Ma, Y.; Zhao, Y.; et al. Ultrahigh pressure superconductivity in molybdenum disulfide. arXiv:1503.05331, 2015.
  16. Nayak, A. P.; Yuan, Z.; Cao, B. X.; Liu, J.; Wu, J. J.; Moran, S. T.; Li, T. S.; Akinwande, D.; Jin, C. Q.; Lin, J. F. Pressure-modulated conductivity, carrier density, and mobility of multi layered tungsten disulfide. ACS Nano 2015, 9 (9), 9117minus;9123.
  17. Han, Y. H.; Gao, C. X.; Ma, Y. Z.; Liu, H. W.; Pan, Y. W.; Luo, J. F.; Li, M.; He, C. Y.; Huang, X. W.; Zou, G. T. Integrated microcircuit on a diamond anvil for high-pressure electrical resistivity measurement.Appl. Phys. Lett. 2005, 86 (6), 064104.
  18. Hu, T. J.; Cui, X. Y.; Gao, Y.; Han, Y. H.; Liu, C. L.; Liu, B.; Liu, H. W.; Ma, Y. Z.; Gao, C. X. In situ Hall effect measurement on diamond anvil cell under high pressure. Rev. Sci. Instrum. 2010, 81 (11), 115101minus;115104.
  19. Rotundu, C. R.; Cuk, T.; Greene, R. L.; Shen, Z. X.; Hemley, R. J.; Struzhkin, V. V. High-pressure resistivity technique for quasi-hydrostatic compression experiments. Rev. Sci. Instrum. 2013, 84 (6), 063903minus;063906.
  20. Funamori, N.; Sato, T. A cubic boron nitride gasket for diamond-anvil experiments. Rev. Sci. Instrum. 2008, 79 (5), 053903minus; 053908.
  21. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22 (7), 1385minus;1390.
  22. Saha, S.; Muthu, D. V. S.; Golberg, D.; Tang, C.; Zhi, C.; Bando, Y.; Sood, A. K. Comparative high pressure Raman study of boron nitride nanotubes and hexagonal boron nitride. Chem. Phys. Lett.

    剩余内容已隐藏,支付完成后下载完整资料


    资料编号:[426677],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。