使用双光纤布拉格光栅传感器和互相关技术的水流量计外文翻译资料

 2022-03-29 21:37:39

A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique

Abstract

In this paper, a principle and experimental results of a cross-correlation flowmeter using fiber Bragg grating (FBG) sensors are presented.The flowmeter has no electronics and no mechanical parts in its sensing part and the structure is thus simple and immune to electromagnetic interference (EMI). For water flow measurement, the flowmeter uses the time delay of the vortex signal generated by a bluff body. Karman vortex shedding frequency is also detected and utilized for the flow velocity estimation in the system. In order to realize a low noise and wide bandwidth system, we employed interferometric detection as a FBG wavelength-shift detection method. The noise spectral density

of the FBG sensor with the interferometric detection was 4times;10minus;4 pm/(Hz)1/2 corresponding to 0.33 nε/(Hz)1/2. A water flow experiment

showed that the flowmeter had a linear characteristic at velocity range from 0 to 1.0 m/s and the minimum detectable velocity of 0.05 m/s.

1. Introduction

Fiber Bragg grating (FBG) sensors have various advantages such as small size, simplicity in sensing principle, electromagnetic interference (EMI) immunity and capability of multiplexing. Because of these advantages, a number of basic researches and applications on FBG sensors have been made [1–3]. In telecommunication systems, FBGs are used as add-drop multiplexers because of their narrow bandwidth (typically 0.1 nm). The FBG application to optical tunable filters is also useful for discrimination of the signals in FBG sensor systems [4]. The applications to smart structures and health monitoring are attractive and have been investigated actively [5,6]. FBGs are embedded in composite materials

and used as strain and temperature sensors in the application. In the field of civil engineering, strain measurements for bridges and buildings are made using FBG sensor arrays with wavelength division multiplexing (WDM) and time division multiplexing (TDM) [7].

In the FBG sensor applications, the choice of the wavelength-shift detection method is very important because the noise level and the measurement bandwidth of the system are mainly determined by the detection method. The most commonly used detection method is the tunable filter detection using Fabry–Perot filter. This method is the standard technique and provides static or quasi-static measurement with a strain resolution of 1 _ε. Another promising method is the interferometric detection [8,9]. This method has the capability of dynamic measurement with high strain resolution in the order of nε/(Hz)1/2. There are some reports about the noise estimation of the FBG sensor with interferometric detection [10–12].

Our subject of research is the FBG application to a water flowmeter. There are various kinds of flowmeters including turbine flowmeters, vortex flowmeters and differential pressure type flowmeters. Measurands of flowmeters are ranging over various flow including water flow, gas flow and multiphase flow. Cross-correlation flowmeter, which utilizes a time delay of signals by coherent structures including vortices and naturally existing unsteady pressure field, is usually used for pipe flow measurement. The advantage of the cross-correlation flowmeter is its simplicity in sensing principle. The only parameter required to the flowmeter is the distance between two sensors. In the cross-correlation flowmeter, two pair of a ultrasonic transmitter and a receiver are usually used because of their non-intrusiveness to the flow [13]. The flowmeter using the ultrasonic transducers has a good linearity at wide velocity range. The problem with the flowmeter is complexity of the sensing part because the system needs at least four transducers. The cross-correlation flowmeter reported by Dyakowski and Williams [14] uses 16 light rays (eight pairs) to detect flow signals in gas–solid mixture. The velocities are obtained from cross-correlation of the intensity modulated light signals, and the average velocity and the velocity distribution in the pipe are then obtained by combining calculated velocities. This flowmeter is attractive because of EMI immunity and the passive nature. However, the system needs particles, which reflect or scatter the light rays, in the fluid and the application is limited. There are few reports concerning the cross-correlation flowmeter using optical sensors, not light ray or laser beam, suited for water flow measurement.

In this paper, we present a water flowmeter using dual FBG sensors and cross-correlation technique. The flowmeter has no electronics and no mechanical parts in its sensing part, and thus the structure is simple. At first, we explain the principle and the schematic diagram of the flowmeter. Next, we present the noise estimation of the FBG sensor with the interferometric detection using a Mach–Zehnder interferometer comprised of a 2 times; 2 and a 3 times; 3 couplers [9]. Finally, we describe experimental performances of the FBG sensor and the flowmeter.

2. A cross-correlation flowmeter using FBG sensors

Fig. 1 shows the principle of the flowmeter. The cross-correlation flowmeter presented here uses FBG strain sensors comprised of FBGs and metal cantilevers. In the flow measurement section, the FBG sensors and a bluff body are used. The bluff body whose shape is a rectangular column generates stable vortices. The time delay between the vortex signals detected by the FBG sensors are estimated using the smoothed coherence transform RSCOT(tau;) [15]. The function RSCOT(tau; 全文共21935字,剩余内容已隐藏,支付完成后下载完整资料


使用双光纤布拉格光栅传感器和互相关技术的水流量计

摘要

本文对使用光纤光栅(FBG)传感器的互相关流量计的工作原理和实验结果进行了介绍。此款流量计在感应部位没有电子设备、没有机械零部件,并且结构简单、不受电磁波干扰。流量计用阻流体产生的涡流信号的时间延迟来测量水的流量。卡曼旋涡脱落频率被用于系统的流速的检测和测量。为了实现低噪音、宽带宽的系统,我们采用光纤光栅波长转换干涉检测作为检测方法。光纤光栅传感的噪声谱密度的干涉检测的4times;4点/(10minus;)1 / 2对应赫兹0.33 nε/(赫兹)1 / 2。一个水流动实验表明, 该流量计在流速范围从0到1.0米/秒的速度和最小检测0.05米/秒时有线性特性。

1、介绍

光纤光栅(FBG)传感器有很多优势,如体积小、工作原理简单、电磁干扰(EMI)免疫强和具有多路复用的能力。因为这些优点,在光纤光栅传感器[1 - 3]上已经做了大量的基础研究和应用。在通信系统中,因为他们的宽带窄(通常是0.1海里),光纤光栅传感器被用于分叉多路复用器。光纤光栅的光学的可调谐滤波器应用对在光纤光栅的传感系统区分信号有很好的帮助[4]。应用于智能结构和健康监测的研究有很大的吸引力并有了积极地研究。FBGs嵌入在复合材料用作应变和温度传感器中的应用。工程建设,桥梁和建筑物的应变测量的领域是应用波分复用(WDM)和时间分割成多路复用(TDM)的光纤光栅列阵传感器[7]。

在光纤光栅传感应用中,选择波长转换检测方法是非常重要的,因为噪音水平和测量系统带宽的主要取决于检测方法。最常用的检测方法是可调谐法布里-珀罗滤波器滤波检测。这种方法是最标准技术,并提供静态或准静态测量分辨率1 _ε。另一种有前景的方法是干涉检测[8,9]。该方法具有高应变动态测量分辨率秩序为nε/(赫兹)1 / 2的能力。这有一些关于带有干涉式检测的光纤光栅传感的噪声估计报告[10 - 12]。

我们研究的课题是光纤光栅应用于水计量计。有各种各样的应用,包括涡轮流量计和差压式涡街流量计。流量计的测量包括不同的流量,包括水的流量、气体流量、多相流动。正交流量计是利用包括涡流和自然存在的不稳定的压力场的连续结构产生的延迟信号,通常是作为管道的流量测量。菲涅尔流量计的优势是它的传感器的工作原理简单。唯一需要的流量计的参数是两个传感器之间的距离。在菲涅尔流量计中,两个超声发射器和接收器经常因为其对流量没有影响而被广泛应用[13]。超声波传感流量计在宽的流速范围具有良好的线性度。流量计的问题是系统需要至少4个传感器而具有非常复杂的传感部分。Dyakowski和威廉姆斯报道的菲涅尔流量计 [14]使用16光线(8)来检测信号的双气固流动混合物。强度调控光信号的互相关速度的获得,是在平均流速和流速分布进行分析的基础上,结合管道计算获得的效应。该流量计因为免疫和无源电磁干扰的天性而具有吸引力的。然而,系统需要反射或散射的光线粒子,在流体和应用中进行限制。很少有关于光学传感器而不是光线和射线适合于水的流量测量的菲涅尔流量计的报道。

在本文中,我们提出了一个使用双光纤光栅传感器和互相关技术的水流量计。没有电子设备和机械零部件的流量计,因此该传感器具的结构简单。首先,我们解释流量计的基本原理和原理图。其次,我们提出了 使用2times;2和3times;3耦合器的马赫-泽德干涉的干涉仪光纤光栅传感的噪声估计[9]。最后,我们描述了光纤光栅传感实验性能和流量计。

2、利用光纤光栅传感器的菲涅尔流量计

图1显示了流量计的原理,菲涅尔流量计呈现了利用光纤布拉格光栅和金属悬臂梁的光纤布拉光栅应变传感器 。在流量测量剖面运用光纤光栅传感器和阻流体。矩形的阻流体柱产生稳定的涡流。 用平滑的连续变换RSCOT来估计光纤光栅传感器检测的涡流信号之间的时间延迟,方程RSCOT表示如下:

(1)

在Gxx(f)和Gyy(f)是传感器信号的上游和下游的功谱,Gxy(f)是两种信号的交叉谱,F-1表示相反的傅里叶变换。函数RSCOT(tau;)是连续信号的一种互相关加权函数比简单的互相关函数更准确和肯定的测出时间延迟。RSCOT(tau;_t)的最大值是两个光纤光栅传感器在Delta;t时间延迟的最加估计。实测速度v是从以下简单的公式计算出的:

(2)

ds是两个传感器之间的距离。

图2说明了整个系统原理图。我们用一个放大自发辐射(ASE)作为一个光学系统的来源。ASE具有22dBm的输出功率的宽度和50nm的半最大值宽度。从ASE分离出的光是从3分贝的耦合器中分离出来的, 然后阐明了光纤光栅传感器安装到两PVC管道的内径是20毫米。光纤光栅传感器反射的光供应给一个2times;2和3times;3耦合器, 1.635和3.169毫米光程差的马赫-泽德干涉仪。在3times;3耦合器中,三种数列排列在一个三角形阵列。这些干涉仪作为对干涉检测的波长转换探测器。入射光是由马赫-泽德干涉仪产生的并由光电探测器转换成电压信号的已调相位信号。六个输出信号由16位分辨率和采样频率10千赫的A / D转换器同时数字化,检测信号被加工得到时间延迟。

光纤光栅反射光线波的波长lambda;B称为一种特定的布拉格波长和波长表达式如下:

,(3)

n是光纤光栅的有效折射率,Lambda;是光纤光栅的调制折射率,布拉格波长lambda;B被光线光栅传感器的线性应变εz所改变,布拉格波长转换delta;lambda;B表达式如下:

(4)

P12是光纤的光学应变常数趋近于0.22,这个领域的灵敏度是1.2 pm/_ε.

得到的转换delta;lambda;B,干涉仪的Vm (m = 1, 2, 3)输出表达式如下:

Vm = alpha;mVin Re[Gamma;(tau;)] = alpha;mVin[1 gamma; cos(theta;MZI theta;m)], (5)

(tau;)是光线光栅传感器反射出的光波的自相关函数,Vin是光线光栅传感器反射的光强度的电压,am是初步的实验光电探测器敏感性得到的补偿差异,如果2 times; 2和 3 times; 3耦合器的分流比是1:1 和1:1:1,可以得到theta;1 = 0, theta;2 = 2pi;/3 , theta;3 = minus;2pi;/3,输出的V1, V2 和V3如下: (6)

信号theta;MZI可以用以下公式算出:

(7)

L是干涉仪的不同光程,信号变化delta;theta;MZI和偏移量delta;lambda;B之间的关系是

(8)

(lambda;B delta;lambda;B)是假设趋近于lambda;B,因为delta;lambda;B比lambda;B小很多,因为delta;lambda;B比lambda;B小很多,测量过程中输出功率的偶然减少导致光学传感器的类型不同,在测量中是可一允许的因为波长相位灵敏度仅取决于波程差L。

3、噪声估计的干涉式光纤光栅传感与检测的摘要

有一些报告关于光线光栅传感器和干涉检测的噪声估计,然而用2 times; 2 和3 times; 3耦合器做干涉仪的噪声估计报告已经提出过了。

3.1. 光电探测器的噪声

图3显示的是光电探测器的电路原理图,光电探测器的噪声是由光电二极管和互阻抗放大器产生的,光电探测器的噪声是由反馈电阻射频(Rf)和互阻抗放大器射频(Rf)还有光电二极管产生的射频产生的热噪声, 散粒噪声由光电二极管输出电压(=Vm/Rf )。等效输入噪声和放大电流因为它们的一些指令比其他噪声小,噪声电压的有效值VN,m (m = 1, 2, 3)表示如下:

(9)

kB是波尔兹曼常数(1.39 times; 10minus;23 J/K),T是绝对温度(300 K),Bw是光电探测器的噪声带宽(2.4 kHz),q是电子电荷(1.6 times; 10minus;19 C)。为了算出散粒噪声,能见度gamma;必须为已知,虽然谱剖面的FBG表示为一个函数的双曲正弦和余弦,为了估算能见度,我们必须假设光线光栅传感器有一个高斯光谱S(upsilon;)如下:

(11)

C是光波在真空中的速度,根据方程式(6)和(11)我们可以由im 得到dc的结果并由im算出散粒噪声。

3.2、A / D转换的量化噪声

量化噪声应该因为图2展示的系统用数字信号表示检波信号theta;MZI而被考虑进去,我们假设量化噪声是白噪声、量化噪声和RMS的矢量量化表示为[16]:

(12)

VLSB是电压分辨率,在系统领域内A/D换器器用16位并且plusmn;10V的测量范围,VLSB = 3.05 times; 10minus;4 V.

3.3、 光强度噪声的来源

ASE的强度波动要被考虑进去,强强烈的噪声产生电压波动Vin,在理想情况,它来自于Eqs。(6)和 (7)中噪声被删除,但是在实际情况,强度造声是存在的,我们假设强度噪声是RMS的白色噪声是ASE输出电压的1%。

3.4、 光纤光栅传感器的噪声估计

给光纤光栅传感器的噪声估计提供了三个不相关的白噪声,输出电压Vest,m (m = 1, 2, 3)和传感器信号theta;MZI被写为:

(13)

(14)

Vnoise,m(Vm)是白噪声,RMS是,theta;N是信号波动,噪声谱密度线是theta;N除以得到的,在波长领域用公式(8)转换成噪声。

图4 显示了光纤光栅的波长域的半最大值宽度_lambda;B和足够输出功率的噪声谱线密度之间的关系。研究发现,噪声谱密度主要取决于光电探测器的噪声。由于能见度gamma;的减少,导致噪声谱密度得宽度lambda;B的增加。在Lambda;b超过0.4 nm时,L = 3.169mm的噪声谱密度比L = 1.635 mm的高。相反对,在lambda;B 低于 0.4 nm时, L = 3.169mm的噪声谱密度比L = 1.635 mm的低。这是因为光程差L已经影响了波长和相位的灵敏度(=minus;2pi;L/lambda;2B)和能见度gamma;。Mach–Zehnder干涉仪对L = 3.169mm的低噪声密度比在L = 1.635mm时更适用,因为光线光栅传感器在通常是lambda;B=0.2 nm。干涉仪探测的光线光栅传感器的噪声谱密度是被2times;10minus;4 和10minus;4 pm/(Hz)1/2 在 L = 1.635和 3.169 mm时分别预算的。结果是1.66 times; 10minus;1 和 8.33 times; 10minus;2 nε/(Hz)1/2, 分别考虑光纤光栅应变的敏感性。

4、实验室试验和讨论的菲涅尔流量计

图5说明的是具体实验装置的光纤光栅传感器和阻流体的流量测量部分。 阻流体的大小是3mm, 从互相关函数(tau;相干信号)的基本原理的基础上,得到相干信号较宽的带宽,我们测试了很多配置传感器和宽带宽的阻流体信号。参数的配置是分贝,ds和直流,分别是阻流体和上部传感器之间的距离,和阻流体和PVC管中心得距离。

4.1、 光纤光栅传感器的性能

图6显示的是KFG-20-120-C1-11应变传感器(KYOWA)和FBG传感器的波形检测到的比较与借鉴。在这个实验传感器被加一个金属悬臂。在数字上光纤光栅传感和参考传感器的波形是相似的。两种传感器的信号振幅之间的不同是由于传感器的耦合不同。图7显示的是光线光栅传感器的噪声谱密度公式lambda;B。这个数字表明,该实验噪音谱密度狭窄_lambda;B高于估计值。造成不同的原因被认为是光电探测器的特征不同和应用于Mach-Zehnder干涉仪的耦合器的指令不同。一方面,在lambda;B=1.2nm时,实验的噪声谱密度比估计的低,这是由于设想的光线光栅传感器的光谱的侧面不同,最小的噪声密度4 times; 10minus;4 pm/(Hz)1/2是在L = 1.635和 3.169mm在lambda;B =0.2 nm时获得的。这个值相当于0.33 nε/(Hz)1/2流体在漩涡中最低的可察觉点。

4.2、 流量测量

4.2.1、阻流体和卡曼漩涡频率的效应

为了证实阻流体的效应,我们比较了有阻流体和没有阻流体的信号。图8显示所测得的波形,计算RSCOT和连续的平方ds = 20毫米和体积速度vb = 1.0米/秒。大部分速度的定义是:体积流率除以管道的横截面积。MSC显示两种信号在频域的相似性并定义如下:

(15)

MSC是用来评价检测信号的带宽。 从图8a和b,看出有阻流体的测量波的幅值明显比没有阻流体的幅值高。阻流体对RS

全文共6217字,剩余内容已隐藏,支付完成后下载完整资料


资料编号:[14872],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。