英语原文共 17 页
外文翻译
Design Safety Margin of a 10,000 TEU Container Ship through Ultimate Hull Girder Load Combination Analysis
通过极限船体梁荷载组合分析设计10,000 TEU集装箱船的安全裕度
E. Alfred Mohammeda, S. D. Bensona, S. E. Hirdarisb, R. S. Dowa
a School of Marine Science and Technology, Newcastle University, UK.
英国纽卡斯尔大学海洋科学与技术学院。
b Lloydrsquo;s Register Asia, Technology Group, South Korea.
Abstract
摘要
Assessment of the ultimate longitudinal strength of hull girders under combined waveloads can be of particular importance especially for ships with large deck openings and low torsional rigidity.
对组合波荷载作用下船体梁的极限纵向强度的评估尤其重要,尤其是对于甲板开口大、抗扭刚度低的船舶。
In such cases the horizontal and torsional moments may approach or exceed the vertical bending moment when a vessel progresses in oblique seas.
在这种情况下,当船舶在斜向海洋中前进时,水平力矩和扭转力矩可能接近或超过垂直弯曲力矩。
This paper presents a direct calculation methodology for the evaluation of the ultimate strength of a 10,000 TEU container ship by considering the combined effects of structural non-linearities and steady state wave induced dynamic loads on a mid ship section cargo hold.
本文在考虑结构非线性和稳态波浪动力荷载联合作用的情况下,提出了一种直接计算10000标准箱集装箱船极限强度的方法。
The design extreme values of principal global wave-induced load components and their combinations in irregular seaways are predicted using a cross-spectral method together with short-term and long-term statistical formulations.
利用交叉谱方法,结合短期和长期的统计公式,对不规则海道中主要的全球波浪荷载分量及其组合的设计极值进行了预测。
Consequently, the margin of safety between the ultimate capacity and the maximum expected moment is established.
因此,在极限承载力和最大预期力矩之间建立了安全裕度。
Keywords: Non-linear FE analysis, Ultimate hull girder strength, Load combination, Container ships
关键词:非线性有限元分析,极限船体梁强度,荷载组合,集装箱船
Nomenclature
sigma;Y |
Yield strength of the material |
a |
Plate length |
Ad |
Cross-sectional area of the deck including stiffeners |
As |
Area of one hull side including stiffeners |
B |
Width of inter-frame panel |
D |
Depth of the midship section |
F1 |
Longitudinal force |
F2 |
Horizontal shear force |
F3 |
Vertical shear force |
F4, MT |
Torsional moment |
F5, MV |
Vertical bending moment |
F6 |
Horizontal bending moment |
Fh |
Applied horizontal shear force |
Fl |
Applied longitudinal force |
Fv |
Applied vertical shear force |
g |
Distance from the centre of the deck area to the plastic neutral axis |
Mh |
Applied horizontal bending moment |
Mp |
Fully plastic moment |
Mt |
Applied torsional moment |
Mv |
Applied vertical bending moment |
MTU |
Ultimate strength in torsion |
MV U |
Ultimate strength in vertical bending |
t |
Plate thickness |
符号说明:
sigma;Y 材料的屈服强度
alpha; 板长
AB 底部区域包括加强筋
Ad 甲板的横截面积包括加强筋
As 一个船体侧面包括加强筋
B 框架间面板的宽度
b 板宽
D 船中剖面深度
F1 纵向力
F2 水平剪切力
F3 垂直剪切力
F4,MT 扭转的时刻
F5,Mv 垂直弯矩
F6 水平弯矩
Fh 施加水平剪切力
Fl 应用纵向力
Fv 应用垂直剪切力
g 从甲板区域中心到塑料中性轴的距离
hw 加强筋高度
Md 设计负荷
Mh 应用水平弯矩
Mp 完全塑性的时刻
Mt 应用扭矩
Mv 应用垂直弯矩
MTU 扭转的极限强度
MVU 垂直弯曲的极限强度
t 板厚
vs 加强筋侧偏转
vos 加强筋挠度的幅度
wc 柱偏转
woc 柱偏转的最大幅度
wopl 板偏转幅度
wpl 板偏转
Zp 塑性截面模数
1.Introduction
1.介绍
Whereas ship accident statistics show a downward trend [1] advances in reliability based limit state analysis methods for use in ship structural design assessment continue advancing [2, 3, 4, 5].
然而,船舶事故统计显示,基于可靠性的极限状态分析方法在船舶结构设计评估中的应用呈下降趋势[1],并在继续推进[2,3,4,5]。
Innovative research and development aims to ensure asset safety, environmental protection under stringent CAPEX requirements.
创新的研发旨在确保资产安全,在严格的资本支出要求下保护环境。
Limit states directly compare capacity with demand, and are commonly used in combination with partial safety factors which apply to specific scenarios.
限制状态直接将容量与需求进行比较,并且通常与适用于特定方案的部分安
资料编号:[5677]
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。