生物膜 – 膜生物反应器(BF-MBR)的膜污染机理:孔隙阻塞模型和膜清洗外文翻译资料

 2022-03-01 22:06:50

BioresourceTechnology250(2018)398–405

Contents lists available at ScienceDirect

Bioresource Technology

journal homepage: www.elsevier.com/locate/biortech

Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): Pore blocking model and membrane cleaning

Yi Zhenga, Wenxiang Zhanga,, Bing Tanga, Jie Dinga, Yi Zhengb, Zhien Zhangc

a School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006,

China

b School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China

c School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China

A R T I C L E I N F O

Keywords:

Biofilm membrane bioreactor (BF-MBR) Filtration performance

Membrane fouling Blocking model Membrane cleaning

A B S T R A C T

Biofilm membrane bioreactor (BF-MBR) is considered as an important wastewater treatment technology that incorporates advantages of both biofilm and MBR process, as well as can alleviate membrane fouling, with respect to the conventional activated sludge MBR. But, to be efficient, it necessitates the establishment of proper methods for the assessment of membrane fouling. Four Hermia membrane blocking models were adopted to quantify and evaluate the membrane fouling of BF-MBR. The experiments were conducted with various op- erational conditions, including membrane types, agitation speeds and transmembrane pressure (TMP). Good agreement between cake formation model and experimental data was found, confirming the validity of the Hermia models for assessing the membrane fouling of BF-MBR and that cake layer deposits on membrane. Moreover, the influences of membrane types, agitation speeds and transmembrane pressure on the Hermia pore blocking coefficient of cake layer were investigated. In addition, the permeability recovery after membrane cleaning at various operational conditions was studied. This work confirms that, unlike conventional activated sludge MBR, BF-MBR possesses a low degree of membrane fouling and a higher membrane permeability recovery after cleaning.

  1. Introduction

A membrane bioreactor (MBR), combining membrane module and bioreactor, has been widely used for municipal and industrial waste- water treatment on account of high pollutant removal efficiency, better effluent quality, low sludge production rate and small footprint (Fenu et al., 2010; Ng and Kim, 2007). However, the serious membrane fouling, inefficient denitrification effect, and high operational cost limit its further application (Huang and Lee, 2015; Wang et al., 2014). Moving bed biofilm bioreactors (MBBR), as a kind of biofilm waste- water treatment technology, has been developed based on a combina- tion of biological contact oxidation and biological fluidized bed and has been proved to be reliable for organic matter and nutrients degradation (Bassin et al., 2012; Luostarinen et al., 2006). Owing to high biomass and diversity in bacterial population, MBBR has some advantages, in- cluding stable and reliable operation, strong resistance to shock loading and adaptability, low residual sludge production and high nitrification rate (Bing et al., 2016; Leyva-Diacute;az et al., 2014). Biofilm membrane bioreactor (BF-MBR), as an alternative way, aimed at alleviating the fouling concerns in relation to MBR and the settle ability issues

regarding MBBR, and was proposed by Leiknes and Oslash;degaard (Ivanovic and Leiknes, 2012; Leiknes and Oslash;degaard, 2007).

In BF-MBR, membrane module and carriers are installed with a fixed or fluidized state. Membrane can trap macromolecular substances and solid particles, thus sustain high biomass concentration and bring about good pollutant degradation. At the same time, carriers have a large surface space, which is beneficial for microbial growth and pol- lutant degradation. Compared with the conventional activated sludge MBR, most of biomass in BF-MBR adhere to the surface of carriers and gradually form a dense layer of biofilm, reducing suspended particles and migrating membrane fouling (Bing et al., 2016). Moreover, BF-MBR can combine the advantages of both, controlling suspended particle concentration, reducing the energy cost and promoting the process ef- ficiency (Duan et al., 2015a,b; Duan et al., 2015a,b).

Currently, most relevant research for BF-MBR (Duan et al., 2015a,b;

Ivanovic and Leiknes, 2012) concentrate on pollutants removal and microbial community. In addition to pollutant degradation, membrane fouling is another significant factor affecting operational efficiency. In conventional activated sludge MBR, membrane fouling has been sys- tematically studied (Lin et al., 2014; Wang et al., 2014). The membrane

⁎ Corresponding author.

E-mail address:

剩余内容已隐藏,支付完成后下载完整资料


BioresourceTechnology250(2018)398-405

目录列表可在科学指导

生物资源技术

期刊主页:www. elvivi.com/LoaTe/ BioTeCo

生物膜 - 膜生物反应器(BF-MBR)的膜污染机理:孔隙阻塞模型和膜清洗

易铮a,张文祥a,,唐炳a,杰丁a,易铮b,张志恩c

a广东工业大学环境科学与工程学院环境与健康与污染控制研究所,广州510006

中国

b南方科技大学环境科学与工程学院,广东省深圳市518055

c重庆理工大学化学化工学院,重庆400054

文章信息

关键词:

生物膜膜生物反应器(BF-MBR)过滤性能

膜污染阻塞模型膜清洗

摘要

与常规活性污泥MBR相比,生物膜生物反应器(BF-MBR)被认为是一种重要的废水处理技术,其结合了生物膜和MBR工艺的优点,并且可以减轻膜污染。但是,建立适当的膜污染评估方法是很有必要的。采用4种Hermia膜阻断模型定量和评价BF-MBR的膜污染。用各种操作条件进行实验,包括膜类型,搅拌速度和跨膜压(TMP)。蛋糕形成模型和实验数据之间的良好一致性被证实,证实了Hermia模型用于评估BF-MBR的膜污染和膜层沉积的有效性。此外,研究了膜类型,以及搅拌速度和跨膜压力对蛋糕层Hermia孔隙阻塞系数的影响。此外,研究了在各种操作条件下膜清洗后的渗透性恢复。这项工作证实与传统的活性污泥MBR不同,BF-MBR具有低程度的膜污染和清洁后更高的膜渗透性恢复。

  1. 介绍

膜生物反应器(MBR)结合了膜组件和生物反应器,由于污染物去除效率高,出水水质好,污泥产率低,占地面积小等优点,已被广泛用于市政和工业废水处理.然而,严重的膜污染,低效的反硝化作用和高操作成本限制了其进一步应用.移动床生物膜生物反应器(MBBR)作为一种生物膜废水处理技术,基于生物接触氧化和生物流化床的结合而开发,已被证明对有机物质和养分降解是可靠的.MBBR由于生物量高,细菌种群多样性,具有稳定可靠,抗冲击负荷和适应性强,残留污泥产量低,硝化率高等优点。生物膜生物反应器(BF-MBR)作为替代方法,旨在减轻与MBR和沉降能力问题相关的污垢问题关于MBBR,由Leiknes和degaard提出。

在BF-MBR中,膜组件和载体以固定或流化状态安装。膜可以捕获大分子物质和固体颗粒,从而维持高生物量浓度并带来良好的污染物降解。同时,载体具有大的表面空间,这有利于微生物生长和污染物降解。与传统的活性污泥MBR相比,BF-MBR中的大部分生物质粘附在载体表面,逐渐形成致密的生物膜层,减少悬浮颗粒和迁移膜污染.此外,BF-MBR可以结合两者的优点,控制悬浮颗粒浓度,降低能源成本,提高工艺效率.

目前,BF-MBR最相关的研究主要专注于污染物去除和微生物群落。除污染物降解外,膜污染是影响运行效率的另一个重要因素。在传统的活性污泥MBR中,已经系统地研究了膜污染.

⁎通讯作者。

电子邮件地址:张文祥@ GDU.E.U.C.CN (W.张)。

https://doi.org/10.1016/j.biortech.2017.11.036

2017年8月14日收到;2017年11月4日收到修订后的表格;2017年11月11日接受

膜污染物,如可溶性微生物产品(SMP),多糖,细胞外聚合物(EPS),腐殖酸和金属离子,被认可(Lin et al。,2014;孟等人,2017).一些过滤和污垢理论,包括临界通量(Pollice等,2005),多孔介质模型(Yazdanshenas等,2010),毛细管中的流动机制(Howell等,1993),串联模型的阻力(Naessens等人, 2012),极化模型(电影理论(Yazdanshenas等,2005)),或经典污垢模型(过滤规律和孔隙阻塞模型( 等,2013),被用来描述MBR的膜污染机理。理论上,BF-MBR具有较低的膜

表格1

试验液的主要特点。

鳕鱼

TP

NH -N

没有-n

没有-n

TSS ts1

(毫克/升)

(毫克/升)

(毫克/升)

(毫克/升)

(毫克/升)

(毫克/升) (毫克/升)

66.50

1.30

0.73

0.46

4.38

4121 3612

4 2 3

表2

测试了MICRODYN-NADIR膜的性质。

由于较低的悬浮颗粒浓度,污垢。但是,据我们所知,迄今为止,对膜的综合调查

膜表面

材料

分子量

截止(MWCO,kDa)

透水性(L mminus;2 hminus;1 barminus;1a

尚未进行BF-MBR的结垢机理。

本文包括对BF-MBR结垢机理的详细研究。研究了膜类型,搅拌速度和TMP等操作条件对通量行为的影响。然后,采用孔隙阻塞模型来解释膜污染过程。此外,利用膜清洗后的渗透性恢复来研究不可逆的抗污垢性和膜清洁效率。除了操作测试外,还应用扫描电镜(SEM)观察并验证了污垢膜上滤饼层的微观形态。此外,还分析了对污垢机理的深入讨论。本研究的重点是了解结垢机理并评估BF-MBR的膜清洗,以及促进其在未来连续过滤测试中的潜在应用。

  1. 材料和方法
    1. 物料

使用填充有生物载体(体积比为32%(Vbio-载体/ Vreactor))的移动床生物反应器(MBBR)进行所有实验。使用过的生物反应器是圆柱形,工作体积为27.7升(50times;30厘米)。将环状通气气管均匀地固定在框架下以吹气泡,从而为DO提供23小时的操作循环和1.5L / min。在整个实验期间,水力停留时间(HRT)和污泥停留时间(SRT)分别在20小时和30天稳定保持。

如显示图1,MBBR的流出物流入膜组件。膜实验的试验液是MBBR的出水,其主要特征表现在表格1.由MICRODYN-NADIR GmbH制造的五个UF膜用于本研究中的测试。根据制造商的信息,他们的房产列在表2.

死端过滤Amicon 8050细胞(Millipore,Billaica,USA)

UP5000 聚醚砜 5 10

UP010 聚醚砜 10 50

UP020 聚醚砜 20 65

UP030 聚醚砜 30 75

UP100 聚醚砜 100 100

PES,聚醚砜。

a在20°C下自己测量。

被用于这项调查。如图所示图。1,过滤单元的内径为6.35厘米,最大容积为50毫升。膜位于细胞的底部。有效膜面积为0.00317mu;m2。通过用氮气瓶的氮气填充电池来提供恒定压力,并且最大压力可以达到0.6MPa,而将渗透物收集在放置在电子秤上的管中以计算渗透通量。

    1. 实验程序

所有实验均在20℃的受控室温下进行。每次测试都采用新膜,除非所用膜的渗透性可以完全恢复,以确保整个研究的初始膜条件相同。在使用前将膜在去离子水中浸泡至少24小时,并在0.2MPa的压力下用去离子水预压0.5小时。稳定后,测量膜的纯水通量

用于UF的0.2MPa来计算透水性(Lp)。在这些实验开始之前,将进料加热至35℃,并在零TMP下在系统中完全再循环,并且每个测试该过程持续约10分钟。

在该试验中,在恒定压力下浓缩50mL试验液体,随时间记录渗透物通量,而不再循环渗透物。弃去第一批20mL渗透物。当获得另外30mL渗透物时,停止过滤并且

图1.实验配置的示意图。

表3

Hermia提出四种膜污染模型。

毛孔阻塞模型

Hermia的模特

物理概念 原理图,示意图

完全堵塞孔(模型1)

J = J0 times;exp(-Ktimes;t);K(sminus;1

形成表面沉积物

内部孔堵塞(模型2)

J= (J0minus;0.5 Ktimes; t)minus;2; K (m/s2)

孔隙阻塞 表面沉积

中间孔堵塞(模型3)

J= (J0minus;1 Ktimes; t)minus;1; K (mminus;1)

毛孔收缩

蛋糕形成(模型4)

J= (J0minus;2 Ktimes; t)minus;0.5; K (s/m2)

毛孔阻塞

收集渗透物用于后续分析。

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[429589],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。