关于信息不对称研究:以PROSPER.COM为例外文翻译资料

 2023-01-11 09:23:00

关于信息不对称研究:以PROSPER.COM为例

原文作者 Seth M. Freedman Ginger Zhe Jin

摘要:以P2P贷款为例,我们发现,实践中学习中在缓解信息不对称的市场主体间的作用。虽然PROSPERP2P平台公开了借款人的信用记录,银行面临严重的信息问题。因为市场是新的,受不利选择相对于线下市场。我们发现早期的借贷者不充分了解市场风险但贷款人的学习是有效的减少风险随着时间的推移。结果,市场越来越多的次贷借款人和发展走向人口的传统信用服务市场。

关键词:信息不对称、P2P

1.简介

互联网作为一个平台的对等(P2P)的交易已经延伸到求职,交友,社交网络,和最近的消费贷款。而搜索成本的节约可以解释增长的一部分,这是令人费解的商品,在互联网上蓬勃发展特征明显的信息不对称的买家和卖家之间。以消费贷款为例。由于P2P平台保持个人借款者和贷款者的匿名给对方,信息不对称的程度可能是夸张和阿克洛夫(1970)型逆向选择会更突出。然而,P2P网贷有不良产品在互联网上,甚至在信贷危机期间。到什么程度,通过什么渠道可以克服信息的问题,P2P贷款借款人的风险?这个问题的答案,对于这些在线市场的长期生存能力不仅是重要的,但它也将加深对信息在市场中角色的重要性。

使用来自美国最大的P2P网贷平台交易的数据(Prosper.COM),我们表明,通过做来学习是在缓解信息问题的关于借款人贷款风险的重要工具。不同于传统的银行贷款,Prosper只能访问一个借款人的信用历史的一部分。在线市场太新,还不确定在何种程度上借款人不利选择成功因为他们无法从银行获得信贷的离线。此外,每一个成功的贷款是无担保的,在一个固定长度的三年,我们的数据和非流通期间。借款人也被禁止借一个以上的贷款Prosper,直到我们的样本的结束。这些机构的功能限制银行的能力,提高对特定借款人的行为。然而,贷款人可以推断市场范围内的风险由现有贷款的观测结果。在这个意义上,在我们的语境进行学习是更广泛的比的个人特质风险的私人学习更类似于关于收集私人信息的激励和市场的整体效率的市场调查

要获取在Prosper.com的信息是真实的平均风险的借款人为具体可见的属性。由于市场是新的,最有可能的信号,通知贷款人风险是类似贷款的历史业绩。Prosper.com宣传每个现有的贷款每月的业绩,但在何种程度上理解这些信息取 于贷款的贷款人的关注自己的投资组合,广阔的市场绩效数据的意识,以及他的时间成本和消化信息的能力。在理论上,贷款人可以直接从他的业绩数据自身的理解,或间接地从市场价格聚集的其他贷款人的贷款表现历史的了解。因为我们观察每个贷款人的组合,每一笔贷款的支付历史上的任何一天,我们可以描述每个贷款人借鉴贷款池性能的信号没有明确的假设市场价格信息的作用。

我们发现,银行,特别是那些加入了早期的Prosper,有系统地评估借款人的风险下,即使我们考虑在2007八月突如其来的金融危机开始。但随着时间的推移,银行从自己的错误中学习大力。我们表明,贷款人更容易停止资助任何新的贷款等他现有的贷款是晚了,和有条件的资助新的贷款,新的贷款回避信用等级(或其他可观察的属性)的MIS在他的投资组合中的不良贷款。

有趣的是,从自己的错误中学习是比从其他贷款人在同一社会集团的投资组合绩效学习更强。这表明,部分学习驱动的借款人风险随着时间的推移,更好的选择是私有的,虽然新世代的贷款人出现更了解借款人的风险比旧的同伙。当我们将根据是否他们最初的投资组合的表现高于或低于市场平均队列的银行,我们发现低于平均放款更快的学习,在贷款的选择上更类似于中位数以上的组,和大约15个月后对Prosper关闭两个组之间的差距。我们排除了均值回归为主要的解释,因此这一发现支持的论点,贷款人的异构信息的处理和这种异质性逐渐下降随着时间的推移,不知情的人了解更多的市场风险。

上述学习为线上和线下的市场意义重大。作为贷款人实现Internet上的实际风险,P2P市场已排除更多的次贷借款人和发展走向的人口由传统的信用服务市场。这表明,除非P2P贷款人可以找到创新的工具, P2P网贷可能竞争在未来和传统银行的领头,不排除从传统信贷市场提供一个可行的替代方案。

我们的工作有助于一些文献。除了学习文献提到的,一个大的文学观点的信息不对称作为市场失灵的来源,认为信息不对称是可以缓解的声誉。

2.市场建立

Prosper所有的是固定利率,抵押贷款,在三年的时间,并且完全摊销与简单的兴趣。贷款的范围可以从1000美元到25000美元。有没有刑罚早日付款。作为我们的样本期间结束时(2008年7月31日),贷款在金融市场不流通,这意味着银行资金贷款与贷款全数付款或违约。在默认的Prosper雇佣收藏机构和任何钱检索集合中返回到贷款的贷款人。

在一个潜在的借款人的贷款申请表前,Prosper认证申请人的社会安全号码,驾驶执照,和地址。Prosper也拉借款人的信用历史Experian,包括借款人的信用评分和信用信息等历史拖欠,拖欠总数目前,在过去的六个月的调查,如果信用评分分为允许的范围内,借款人可以发布一个易趣网风格列表指定最大利率她愿意支付的要求,贷款金额,此次拍卖的持续时间(3-10天),9和她是否要经过充分的资金立即关闭列表(称为autofunding)。在这个清单中,借款人也可以描述自己,贷款的目的,本市居住,她如何偿还贷款,和任何其他信息(包括图像),她觉得可以帮助基金贷款。在同一上市,成功将借款人的信用等级(基于信用评分计算),房屋所有权状况,债务对收入比率,和其他信用历史信息。

3.线下的竞争对手和宏观环境

主要的竞争对手,Prosper面临传统市场是在我们的样本期间的信用卡债务和无担保的个人loans.18(2006年6月1日至2008年7月31日),36%的成功上市所提到的信用卡整合,这是高于一提到商务(23%),抵押贷款(14%),教育(21%),和家庭用途(18%)如结婚的钟声。大约6%的成功上市,提到Prosper的贷款,如果资金,将用于偿还贷款在离线市场。

消费者贷款已经发生了戏剧性的变化在我们的样本期间,从一个平静的市场和稳定的货币政策在2007八月到2007年8月9日逐步溢出的次贷危机爆发到其他类型的贷款和投资。鉴于此,我们的分析控制一些日常的宏观经济变量,包括银行的优惠利率,泰德价差,产量差异企业债评级AAA和BAA之间,与标准普尔500指数的收盘行情。据格林鲁等人称。(2008),中间的两个是次贷危机的最强的指标。此外,我们包括失业率由劳工统计局(BLS)的报告由国家和月,住房价格指数由联邦住房企业监管办公室(OFHEO)的报告由国家和季度,和高级贷款官员已经放宽或收紧信贷标准的消费者贷款的季度的百分比,和止赎率由国家和月报道。我们也控制了一些日常的Prosper的具体市场的特点,包括积极的贷款申请的信用等级的总价值,提交的信用等级投标总金额,并资助贷款已经晚了信用等级的百分比。因为在宏观环境中观察到的金融动荡是植根于次级抵押贷款危机,我们控制的相互作用的OFHEO的止赎率和借款人的业主地位和消费信贷宽松政策和紧缩借款人是否有E或人力资源信用等级。大多数时间序列变量,除了特定的日期,状态或信用等级,将专注于年周固定效应。只要有可能,我们估计与规格没有这些固定效应。

4.结论

我们研究如何网上银行在P2P借贷市场应对信息不对称,可能在互联网上被夸大。有证据表明,个人贷款在Prosper.com做面临严重的信息问题,因为他们不守信用的历史和发展借款人可能有不利选择的网站作为他们在离线市场获得贷款的难度。事后性能数据表明,许多银行的公积金贷款的低预期回报他们学会避开高风险贷款时间。虽然我们不能排除慈善或有趣的潜在的动机,最可能的解释是,银行,特别是那些加入了Prosper的早期,缺乏风险评估的专业知识。通过做来学习在解决问题中起着重要的作用,但仍然存在大量的贷款人的异质性。与低效率的市场的文献一致,我们观察到,一些银行比其他人更好地了解。我们发现,更多的和不太复杂的贷款人之间的差距随时间逐渐关闭,在队列,在队列。因为收敛在同伙比跨世代的收敛速度更快,仍然有一个广泛的预期回报率在我们的样本的异质性。

我们的研究结果并不是对网络的快速增长与P2P网贷的不一致。我们怀疑的Prosper部分由单纯的贷款人借款人风险大幅低估了互联网上的驱动,这反过来又吸引了高风险借款人来填充网站。由于银行学习的实际风险,最初的错误驱动的Prosper就无法长期持续下去。这解释了为什么随着时间的推移,P2P市场排除在外,越来越多的次贷借款人和演变对人口的传统信用服务市场。事实上,在我们的样本期间结束时,风险列表的资助率已经很低,当Prosper在七月重开2009(SEC审查后)开始不允许任何借款人信用评分低于640(即D级或以下)网站上的列表。在何种程度上P2P网贷可以与传统银行争夺优质借款人仍然是一个悬而未决的问题。P2P网贷可能在搜索成本的节约或在线社交网络具有优势。

剩余内容已隐藏,支付完成后下载完整资料


外文文献出处:Working Paper 16855 http://www.nber.org/papers/w16855

原文:

LEARNING BY DOING WITH ASYMMETRIC INFORMATION:

EVIDENCE FROM PROSPER.COM

ABSTRACT

Using peer-to-peer (P2P) lending as an example, we show that learning by doing plays an important role in alleviating the information asymmetry between market players. Although the P2P platform (Prosper.com) discloses part of borrowersrsquo; credit histories, lenders face serious information problems because the market is new and subject to adverse selection relative to offline markets. We find that early lenders did not fully understand the market risk but lender learning is effective in reducing the risk over time. As a result, the market excludes more and more sub-prime borrowers and evolves towards the population served by traditional credit markets.

1.Introduction

The Internet as a platform for peer-to-peer (P2P) transactions has extended to job search,dating, social networks, and recently consumer lending. While search cost savings may explain part of the growth, it is puzzling how commodities that feature significant information asym-metry between buyers and sellers can flourish on the Internet. Take consumer lending as an example. Since the P2P platforms keep individual borrowers and lenders anonymous to each other, the extent of information asymmetry is likely to be exaggerated and Akerlof (1970) type adverse selection could be more salient online than offline. Nevertheless, P2P lending has flour-ished on the Internet, even in the midst of a credit crisis. To what extent and by what channels can P2P lenders overcome the information problems about borrower risk? The answer to this question is not only important for the long-run viability of these online markets, but it will also deepen our understanding on the role of information in markets.

Using transaction level data from the largest P2P lending platform in the US (Prosper.com),we show that learning by doing is an important tool for lenders in alleviating their information problems about borrower risk. Unlike traditional banks, Prosper lenders have access to only part of a borrowerrsquo;s credit history. The online market is so new that it is uncertain to what extent borrowers adversely select Prosper because they cannot get credit from offline lenders. Additionally, every Prosper loan is unsecured, on a fixed length of three years, and non-tradable during our data period. Borrowers were also disallowed to borrow more than one loan on Prosper until the end of our sample. These institutional features restrict a lenderrsquo;s ability to improve actions on a specific borrower. However, lenders may infer market-wide risk by observing outcomes of existing loans. In this sense, the learning by doing in our context is broader than private learning of idiosyncratic individual risk and more similar to market-widelearning concerning the incentive to gather private information and the overall efficiency of a market.

The information to be learned on Prosper.com is the true average risk of borrowers with as pecific observable attribute. Since the market is new, signals that most likely inform the risk of a prospective borrower are historical performance of similar loans. Prosper.com publicizes monthly performance of every existing loan, but the extent to which a lender understands such information depends on the lenderrsquo;s attention to his own portfolio, awareness of market-wide performance data, as well as his time cost and ability to digest the information. In theory, a lender may learn directly from his own understanding of performance data, or indirectly from market price which aggregates the understanding of historical loan performance of other lenders.Since we observe every lenderrsquo;s portfolio and every loanrsquo;s payment history on any day, we can characterize how each lender learns from the pool of loan performance signals without making explicit assumption about the informational role of market price.

We find that lenders, especially those that joined Prosper early, have systematically under-estimated borrower risk, even after we account for the unexpected financial crisis beginning in August 2007. But over time, lenders learn vigorously from their own mistakes. We show that a lender is more likely to stop funding any new loans as more of his existing loans are late,and conditional on funding new loans, the new loans shy away from the credit grade (or other observable attributes) of the mis-performing loans in his portfolio .

Interestingly, learning from onersquo;s own mistakes is stronger than learning from the portfolio performance of other lenders in the same social group. This suggests that part of the learning that drives the better selection of borrower risk over time is private, although newer cohorts of lenders do appear more aware of borrower risk than older cohorts. When we divide a cohort of lenders according to whether the performance of their initial portfolio is above or below the market median, we find that the below-median lenders learn faster, become more similar to the above-median group in terms of loan selection, and close the gap between the two groups after roughly 15 months on Prosper. We rule out mean reversion as the main explanation, thus this finding supports the argument that lenders are heterogeneous in information processing and such heterogeneity gradually declines over time as the less-informed parties learn more about the market-wide risk.

The above-mentioned learning has significant implications for both online and offline markets.As lenders realize the actual risk on the Internet, the P2P market has excluded more and more subprime borrowers and evolved towards the population served by traditional credit markets.This suggests that, unless P2P lenders can find innovative tools to select “diamonds in the rough,” P2P lending is likely to compete head-to-head with traditional banks in the futu

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[287359],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。