使用统计技术优化的试剂用量对铜浮选外文翻译资料

 2022-09-07 11:44:08

Optimization of reagent dosages for copper flotation using statistical technique

Y. VAZIFEH1, E. JORJANI1, A. BAGHERIAN2

1. Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Poonak, Hesarak, Tehran, Iran;

2. Metallurgy Division, Sungun Copper Concentrator Plant, Varzaghan, Tabriz, Iran

Received 25 January 2010; accepted 6 May 2010

Abstract: The effects of Z11 and AP407 collectors as well as AF65 and AF70 frothers were evaluated in the rougher flotation circuit of the Sungun copper concentrator plant using 24 full factorial design. Response functions were produced for both Cu grade and recovery and optimized within the experimental range. The optimum reagent dosages were found to be 12.01 g/t Z11, 11 g/t AP407, 3g/t AF65 and 5g/t AF70 to attain the maximum Cu grade (8.17%). The reagent dosages of 12g/t Z11, 11g/t AP407, 3g/t AF65 and 15g/t AF70 produced the maximum Cu recovery (86.44%). The collector distribution demonstrated that the distribution pattern of (32%, 32%, 20%, 16%) can produce the best recovery (87.75%) in comparison to other examined distribution patterns.

Key words: copper sulphide ores; flotation reagents; modelling; optimization

1 Introduction

Froth flotation is a process used for selectively separating hydrophobic materials from hydrophilic. Various factors, such as the type and quantity of chemicals added[1minus;2], the bubble size[3], stator and rotor configuration[4] and residence time[5] influence the performance of a flotation unit.

The types and quantity of the reagents are the most important part of the flotation process. In commercial plants, the control of reagent additions is the most important aspect of the flotation strategy[6].

Reagent schemes used for the treatment of porphyry copper and copper-molybdenum ores are relatively simple and usually involve lime as a modifier, xanthate as the primary collector, and a secondary collector that includes dithiophosphates, mercaptans, thionocarbamates and xanthogen formates. The frothers, such as methyl isobutyl carbonyl, TEB (alkoxy paraffin and pine oil), Dow 250, Dow 1012 (glycols), HP700 and HP600 (alcohols in amine oxide) are typically used in the flotation of porphyry copper and copper molybdenum ores[6].

In copper flotation plants, an increase of 1%minus;2% in recovery and/or grade is economically remarkable. In this work, reagent optimization is a very important issue, and much time and attention are spent on the optimization of flotation reagents in order to provide the

most effective separation and concentration results.

The advantages of the statistical design of experiments over classical treatment of one variable at a time were demonstrated in mineral processing industry[7minus;14]. One of these statistical techniques was the factorial design test, which was used to study several factors and determine their main effects and interactions[15].

The aim of the present work is to use statistical techniques to optimize the dosages of four flotation reagents, the collectors of Z11(isopropyl xanthate sodium), AP407 (a mixture of mercapto benzothiazole and dithiophosphate), the frothers of AF65 (ether polyglycol) and AF70 (methyl isobutyl carbonyl) in the rougher circuit of the Sungun Copper Concentrator Plant to achieve the maximum grade or recovery. By using this procedure, the main effects and interactions of these reagents on copper flotation performance are determined. The main steps in the current work are: 1) designing and performing of experiments on laboratory scale; 2) analysis of experimental results to determine the significant factors influencing the copper grade and recovery in the rougher stage; 3) determination of copper grade and recovery equations as functions of the reagent dosages; 4) establishing optimum reagent dosages to maximize the grade or recovery; 5) optimization of reagent distribution in the rougher circuit.

2 Sungun Copper Concentrator Plant

The Sungun copper mine is located in the eastern Azerbaijan Province in northwestern Iran. The total mineral resource of the Sungun copper reserve, at 0.25% Cu cut-off grade, is estimated to be 800 million tons and believed to exceed 1 billion tons. The total minable ore based on mine design and production scheduling is 400 million tons with an average Cu grade of 0.62%.

In the Sungun Concentrator Plant, the crushed ore is fed into a semi-autogeneses (SAG) mill to produce a product with K80 =3mm (Fig.1). The SAG mill products are then transferred to the two ball mills, where the ore is ground to a level of K80 = 80mu;m. Lime, collectors of Z11 and AP407 are added to the ball mill feed as well. Then the product is discharged into a rougher flotation conditioner tank. The pH level of the feed with respect to the rougher flotation is measured in this conditioner tank and lime slurry is added. Additionally, the frothers AF65 and AF70 are added to the conditioner tank. The conditioner tank overflow enters the 12 rougher flotation tank cells which are grouped into 6 banks of 2 cells each. Further reagents (collectors) are added to the flotation cells 3, 5 and 9. The collector distribution pattern is 32% for ball mill feed, 32% for the third rougher flotation cell, 20% for the fifth rougher flotation cell and 16% for the ninth rougher flotation cell.

Tailings from the last rougher flotation bank together with cleaner scavenger tailing form the final plant tailing output stream. The rougher concentrate obtained from each cell is combined with the cleaner scavenger concentrate and pumped to the regrind hydrocyclone clusters. Hydrocyclone underflow, after lime addition, re

剩余内容已隐藏,支付完成后下载完整资料


使用统计技术优化的试剂用量对铜浮选

Y. VAZIFEH1, E. JORJANI1, A. BAGHERIAN2

  1. 采矿工程系、科学研究分支,伊斯兰自由大学2.铜冶金部门Sungun集中器工厂,Varzaghan,大不里士、伊朗

2010年1月25日收到; 2010 年6月接受

摘要:Z11的影响和AP407捕收剂以及AF65 和AF70起泡剂进行Sungun集中器铜选矿厂粗选流程使用24正交设计。响应函数产生在铜品位和回收和优化的实验范围内。最佳试剂用量被发现是12.01g/t Z11 ,11g/t AP407,3g/t AF65和5 g/t AF70达到最大铜品位(8.17%)。12 g/t Z11的试剂用量,11 g/t AP407,3 g/t AF65 15 g/t AF70产生最大铜回收率(86.44%)。正交表的分布格局分布表明,(32%,32%,32%,32%)可以产生最好的回收(87.75%)相比,其他检查分布模式。

关键词:硫化铜矿石;浮选药剂;建模;优化

1引言

泡沫浮选是有选择地分离亲水疏水材料的一个过程。等各种因素的类型和数量化学物质添加[1minus;2],泡沫的大小[3],定子和转子配置[4]和停留时间[5]的影响浮选的性能。

试剂的种类和数量是浮选过程的重要组成部分。在工业化装置、试剂添加的控制是浮选方法的最重要方面[6]。

试剂方案用于对付斑岩铜和铜钼矿石是相对简单的,并且通常包括以石灰作为改性剂,黄原酸作为主要的浮选药剂,和第二个捕收剂,它包括浮选剂,硫醇,硫氨酯和植物黄素格式。起泡剂,如甲基异丁基羰基,tep -(烷氧基石蜡和松树油),陶氏250,陶氏1012(乙二醇)HP700和HP600(氧化胺醇)通常使用含铜斑岩钼和铜矿石的浮选[6]。

铜浮选厂,增加1%minus;2%回收和/或品位是经济显著的。在这个工作中,试剂优化是一个非常重要的问题,和多的时间和精力都花在优化浮选药剂为了提供最有效的分离和浓度的结果。

统计实验设计的优势在传统的在矿物加工工业上求解一个变量[7minus;14]。这些统计技术之一是阶乘设计测试,用于研究的几个因素并确定其主要影响和交互[15]。

现在的工作的目的是使用统计技术来优化四个浮选药剂的剂量,Z11捕收剂(异丙黄原酸钠),AP407(巯基苯并噻唑和浮选剂的混合物),AF65起泡剂(醚聚乙二醇)和AF70(羰基甲基异丁基)粗糙Sungun铜集中器的粗选流程达到最大品位或回收率。通过这个过程,这些试剂的主效应和交互作用对铜浮选性能确定。当前工作的主要步骤是:1)在实验室规模内设计和执行实验;2)分析实验结果,确定在粗选阶段影响铜品位和回收率的重要因素;3)测定铜品位和回收率方程作为试剂用量的功能;4)建立最佳试剂用量来得到最大的品位和回收率;5)在粗选流程中优化试剂分布。

2 Sungun铜集中器工厂流程

Sungun铜矿位于在伊朗西北部东阿塞拜疆省。总Sungun铜矿产资源储备,铜品位下限0.25%,估计有8亿吨,超过10亿吨。总基于矿山设计和生产调度的可开采的矿石4亿吨,平均铜品位为0.62%。

Sungun集中器装置流程,粉碎矿石送入一个(凹陷)磨机生产出的产品与K80 = 3毫米(图1)。凹陷磨机产品然后转移到两个球磨机,矿石在那里K80 = 80mu;m的水平。石灰、捕收剂Z11和AP407被添加到球磨机进料。然后产品排入粗选槽。流入的pH值与粗选测量在这个调节槽相对应和添加石灰浆。此外,起泡剂AF65和AF70被添加到调节槽。调节槽水箱溢流进入12粗选槽分为6个岸的2槽子。进一步试剂(捕收剂)被添加到浮选机3、5和9。捕收剂分布格局对球磨机饲料32%,32%第三粗选细胞,20%第五粗选第九粗选细胞细胞和16%。

从最后一次粗选尾矿堆积形成和扫选最终流程流出尾矿。获得的粗糙集中从每个浮选池结合净化水集中和注入再磨研水力旋流器集群。水力旋流器下溢,石灰添加后,报告再磨研球磨机。再磨研球磨机是集群与水力旋流器操作在一个封闭的回路。水力旋流器溢流(K80 = 40mu;m)转移到两个清洁池。集中获得清洁列是转移到再清理池产生最终精矿30%(名义)铜品位和总铜回收率约84%。

3实验

3.1材料

本研究中使用的铜矿石的样品准备是从SAG磨机出矿。K80 = 80mu;m的样品是经过两个阶段的实验室准备的破碎,包括颚和辊破碎机和球磨机磨。辉铜矿(0.36%)、黄铜矿(0.37%)、铜蓝(0.2%)和黄铁矿(6.9%)的硫化矿物的代表性铜含量0.61%,铜氧化物含量0.054%,铁含量3.33%。

图1Sungun铜浮选厂流程图

3.2方法

浮选的研究进行的全因子设计实验。研究变量的剂量Z11和AP407捕收剂和AF65 AF70起泡剂。全因子设计变量和水平的编码和实际值都是表1中给出。并给出了高和低水平 1和1标记。在流程中90天使用的试剂用量构成了采样周期,被视为中心分实验设计。

丹佛浮选机是用于浮选研究。样例(1175克)与水混合固体浓度调整到34%,条件在3 L浮选池3分钟。使用石灰添加试剂将pH值调整到11.8。试剂添加根据实验设计在预定的数量。泥浆进一步条件后的每个试剂,即2.5分钟捕收剂和起泡剂1分钟。叶轮转速1250 r / min,浮选时间16分钟的粗选,33分钟的浮选时间缩减Sungun工厂的申请的所有实验。泡沫和尾矿分别收集,过滤和分析计算铜品位和回收率。

优化后的试剂用量根据分布(100%,0,0,0),完成捕收剂的优化配置。捕收剂的分布样式(32%,32%,32%,32%)(当前流程中的分配),(25%,25%,25%,25%),(75%、10%、15%,0)和(40%,10%,10%,40%)相对于球磨机的给矿, 第三次粗选泡沫 ,第五次粗选泡沫和第九次粗选泡沫分别在实验室中被检验。960s收集的泡沫被分进年代的泡沫160s模拟第一次和第二次粗选细胞,320s模拟第五次到第八次粗选泡沫和320s模拟第九次到第十二次粗选泡沫。

4结果与讨论

4.1统计设计

16项基于N = 2n的方程的测试是必要,其中N和N分别是测试的变量和数量。作为一个实验的设计的基本原则,在评估误差和标准差的基础上4项实验被实施。统计设计是使用设计设计专家设计的软件。4变量矩阵和相应的等级和铜回收率如表2所示。进行方差分析是评估效果的显著和交互影响因素调查。如果其显著性水平大于95%则影响被认为是重要的,这意味着该模型假定值低于0.05可能是相当大的。

所有变量在回收率上的主要影响在95%的置信区间显著的。正系数X1, X2, X3和X4变量表明增加回收率的积极影响。影响顺序为X4 gt; X2 gt; X3 gt;X1。AF70 (X4)的影响是非常显著和正的。在相互作用之间X1X2, X1X4, X2X4 和 X3X4有负的影响,但X1X2X4正的影响。

4.1.2铜品位模型方程

评估对铜品位显著影响,方差分析是由95%的置信区间,结果如表5所示。根据这些结果,下面的模型使用回归分析得到:

yg=0.46 0.014X3 0.031X4–0.012X1X2–0.012X2X4 0.01X1X2X3 0.015X1X3X4 0.017X2X3X4 (2)

yg预测1/K1/2 X1, X2, X3和X4分别是Z11,AP407,AF65和AF70的编码值。yg的价值比铜品位产生更好的相关性,因此,它被认为是因变量,而不是铜品位。

根据方差分析(见表5),费舍尔的群概率值(PModel gt; F)= 0.0001表明模型是很有意义的。等级模型提出了一种确定系数R2 = 0.89,解释89%变化。调整系数为83.09%。观察到yg并使用算式(2)获得预测值,如表4和图3所示。模型还表明缺乏合适(PModel gt; F)= 0.803时并不显著;因此,模型被认为是足够的预测变量的范围内应用。可以看出系数(CV = 4.03%)变化时是没什么价值的,这表明两个实验的精度和可靠性。曲率的假定值的析因实验等级是0.0693比0.05,表明无显著意义设计空间的曲率。

图3yg预测与测量值

AF65 (X3) 和 AF70 (X4)在铜品位上的主要影响是在95%的置信区间显著。最重要的影响是AF70(X4)是不显著的。X1X2 和 X2X4的相互作用有一个积极的影响,X1X2X3, X1X3X4 和 X2X3X4 在铜品位方面都有一个消极的影响。

4.2三维(3d)响应面和立方体块铜品位和回收率

三维平面回归方程是一个图形表示通常用于可视化响应之间的关系和实验水平的每个变量和变量之间的相互作用的类型,从中推断最佳条件在[16, 19]之间。

NS: 不显著; S: 显著; CV = 4.03%; R2= 89.67%; Adj. R2= 83.09%

图4显示了在控制AF65(X3)和AF70(X4)的用量后铜品位与Z11(X1)和AP407(X2)三维响应面关系。很明显,最高的回收率可能达到的最大程度的AP407(X2)和最低水平的Z11(X1)。

图5minus;7是X1X4的交互响应面块,分别X2 X4和X3X4。看到回收率稳步上升增长AF70(X4)和减少其他变量。很明显,添加AF70对回收率产生了很大的影响。

图8显示了在控制AF65(X3) 和AF70(X4)的用量后铜品位与Z11(X1)和AP407(X2)三维响应面关系。很明显,最高等级可以达到最高水平的AP407(X2)和Z11(X1)和最低限度的Z11(X1)和AP407(X2)。

图9显示了在控制Z11(X1)和AF65(X3)的用量后铜品位与AP407(X2)和AF70(X4)三维响应面关系。很明显,最高等级可以达到的最低AP407(X2)和AF70(X4)。

图4在控制AF65(X3)和AF70(X4) 下研究Z11(X1) 和AP407 (X2) 对铜品位的影响

图5在控制AF65(X3) 和AP407 (X2)下研究Z11(X1) 和AF70 (X4) 对铜品位的影响

图6在控制AF65(X3) 和 Z11(X1)下研究AP407(X2) 和AF70 (X4) 对铜品位的影响

图7在控制AP407 (X2 剩余内容已隐藏,支付完成后下载完整资料


资料编号:[146711],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。