Oximation reaction induced reduced grapheme oxide gas sensor for formaldehyde detection.
Lei Zhou, Rong Qian, Shangjun Zhuo, Qiao Chen,Zhaoyin Wen, and Guorong Li.
Abstract
High-performance gas sensors can offer great potentials for monitoring and detection of volatile organic compounds (VOCs) in both domestic and industrial environment. In the present work, a new HCHO gas sensor was constructed with reduced graphene oxide (RGO) induced by the oximation reaction. The gas sensing performance test results suggested that the RGO hydroxylamine hydrochloride (RGO/HA-HCl) sensor presented a high response of 75% at 16 ppm HCHO at room temperature, and a high selectivity for HCHO suffering little interference with high concentrations of volatile organic compounds, including methanol, ethanol, and methylbenzene, dichloromethane and water. Additionally, the RGO/HA-HCl sensor also showed a good long-term stability with RSD of 5.83% for a 15-day continuous sensing test, and the detection limit (DL) could reach 0.023 ppm under ambient conditions. Moreover, the mechanism for the high sensitivity and selectivity of formaldehyde was further established by in-situ ga chromatography mass spectrometry (GC-MS). This work would provide a reliable new HCHO gas sensor which could be used for monitoring and forewarning the emission of HCHO for a better protection and improvement of our environment.
1. Introduction
HCHO as a common chemical, is extensively used in industrial manufacture for the fabrication of resin, rubber, paper, pesticide and textile and so on [1]. However, HCHO is also a serious toxic pollutant that can cause asthma, cancer, leukemia and some other diseases [2]. In 2010, the World Health Organization (WHO) determined an important standard that a maximum allowable indoor HCHO concentration cannot exceed 0.08 ppm [3]. In most cases, it is very difficult for people to be conscious of low concentration of HCHO, thus it is urgent to develop the advanced techniques for the fast detection and early warning of HCHO. In the literatures, various methods have been reported for HCHO detection, such as high performance gas chromatography mass spectrometry [4], polarography [5], phenol reagent method [6], fluorescence [7] and spectrophotometry methods [8] and so on. Although these methods displayed high sensitivity and selectivity of the detection of HCHO, most of them required complicated sample preparation and bulky testing instruments. In contrast, portable, integrated semiconductor gas sensors are undoubtedly a better choice for on-site detecting due to many distinct advantages. These include low cost, facile operation, fast and real-time “detect to warn” which became more effective for mobile applications as internet-connected devices [9, 10]. Hence, the practical semiconductor gas sensors have higher commercial potential with wider applications in the future smart environmental monitoring.
Most of the semiconductor gas sensors measure the resistance changes, which offer uninterrupted sensing signals. They are based on the electrons or holes exchange or chemical reactions with chemisorbed oxygen ion (O-, O2-) on the sensing channel surface of the materials [11]. Semiconducting-metal oxides (SMOs), such as ZnO [12], SnO2 [13] and CuO [14] have been widely developed for the gas-sensing materials because of their high sensitivity and fast response time [15-17]. In most cases, single and pure components have limited sensitivity and selectivity for specific molecules, due to their nonselective surface electronic interactions of the oxides [18]. Usually, the structural regulation and surface modification are considered effective methods to improve the gas-sensing performance. For instance, Long et al. [19] synthesized 3D hierarchical ZnCo2O4 microstructure with a low-power microheater for a detection limit of 0.03 ppm HCHO at 300 °C with good long-term stability. Wang et al. [20] fabricated Co doped In2O3 nanorods for a highest response of 23.2 for 10 ppm HCHO at 130 °C. Wan et al. [21] designed In2O3@SnO2 coreminus;shell nanofiber via electrospinning and hydrothermal methods for HCHO detection, with instantaneous response/recovery time (3/3.6 s) for 100 ppm HCHO at 120 °C.
Recently, graphene or derivatives based binary nanocomposites, are promising for detecting trace concentrations of VOCs due to their properties of reducing the sensor operation temperature while maintaining their sensitivity. For instance, Ashraf et al. [22] reported a novel RGO/ZnWO3 HCHO gas sensor for a high response of 21.4% for 10 ppm HCHO at 95 °C with a linear correlation between achieved responses and concentration of target gas (1-10 ppm). Wang et al. [23] synthesized mesoporous ultrathin SnO2 nanosheets in situ modified by graphene oxide (GO) for a response value (Ra/Rg) as high as 2275 toward 100 ppm HCHO at 60 °C. Sun et al. [24] adopt a solution-based self-assembly method for synthesis of RGO/ZnSnO3 composites for HCHO detection, with low detection limit of 0.1 ppm HCHO at 103 °C. Li et al. [25] fabricated the RGO/MoS2 hybrid film for a room temperature HCHO gas sensor with 4.6% response for 15 ppm HCHO. Song et al.[26] adopt RGO-modified silicon nanowires for synthesis of a core-shell structure for HCHO sensor, which could reach a satisfactory detection limit as low as 0.035 ppm of HCHO. However, despite considerable progress, main challenges including stable daily applications with high selectivity, low DL while operating at room temperature without interference of humidity still remain for ideal HCHO gas sensors.
In the present work, a novel HCHO gas sensor was designed and fabricated based on low cost RGO sheets. In order to improve the sensitivity, an interdigitated electrode configuration was adapted. The selectivity of the sensor was guaranteed by using a porous polyvinylidene difluoride (PVDF) membrane modified w
剩余内容已隐藏,支付完成后下载完整资料
氧化反应诱导还原氧化石墨气体传感器用于甲醛检测
周磊,钱荣,卓尚军,陈巧,文肇音,李国荣
摘要
高性能气体传感器为监测和检测挥发性有机化合物(VOCs)提供了广阔的应用前景。在目前的工作中,我们利用氧化还原氧化石墨烯(RGO)构建了一种新型HCHO气体传感器。气体传感性能测试结果表明,盐酸RGO-羟胺(RGO/HA-HCl)传感器在室温下对16ppm的HCHO具有75%的高响应,对HCHO的高选择性受甲醇、乙醇、甲苯等高浓度挥发性有机物及二氯甲烷和水干扰小。此外,RGO/HA-HCl传感器在15天的连续传感测试中也表现出良好的长期稳定性,RSD为5.83%,在环境条件下的检测限(DL)可达到0.023 ppm。同时,采用原位气相色谱-质谱联用技术(GC-MS)进一步确定了甲醛的高灵敏度和高选择性机理。这将提供一种可靠的新型HCHO气体传感器,可用于监测和预警六氯环己烷的排放,更好地保护和改善我们的环境。
1. 介绍
HCHO作为一种常见的化工产品,广泛应用于工业生产中的树脂、橡胶、纸张、农药、纺织品等的制造[1]。然而,HCHO也是一种严重的有毒污染物,可引起哮喘、癌症、白血病等疾病[2]。2010年,世界卫生组织(WHO)确定了室内六氯环己烷最高允许浓度不能超过0.08ppm的重要标准[3] 在大多数情况下,人们很难意识到低浓度的六氯环己烷,因此迫切需要开发先进的六氯环己烷快速检测和预警技术。文献中报道了各种检测HCHO的方法,如高效气相色谱-质谱法[4] 极谱法[5] 酚试剂法[6]、荧光法[7]、分光光度法[8]等。虽然这些方法对HCHO的检测具有较高的灵敏度和选择性,但大多需要复杂的样品制备和庞大的检测仪器。相比之下,便携式集成半导体气体传感器无疑是一个更好的选择,现场检测由于许多明显的优势。这些特点包括低成本、易操作、快速和实时的“检测报警”,这对于作为互联网连接设备的移动应用来说变得更加有效[9,10]。因此,实用的半导体气体传感器具有较高的商业潜力,在未来的智能环境监测中有着广泛的应用。
大多数半导体气体传感器测量电阻变化,从而提供不间断的传感信号它们基于电子或空穴交换或与材料传感通道表面上的化学吸附氧离子(O-,O2-)的化学反应[11] 半导体金属氧化物,如氧化锌[12]、氧化锡[13]和氧化铜[14] 由于其高灵敏度和快速的响应时间,在气敏材料中得到了广泛的应用[15-17]。在大多数情况下,由于氧化物的非选择性表面电子相互作用,单组分和纯组分对特定分子的灵敏度和选择性有限[18]。通常认为结构调整和表面改性是提高气敏性能的有效方法。例如,Long等。[19] 采用低功率微加热器在300℃下合成了检测限为0.03ppm的三维层状ZnCo2O4微结构,具有良好的长期稳定性。wang等。[20] 制备的共掺杂In2O3纳米棒在130℃下对10ppm HCHO的最高响应为23.2。Wan等人。[21] 通过静电纺丝和水热方法设计了In2O3@SnO2核壳纳米纤维,用于HCHO检测,在120°C下100 ppm HCHO的瞬时响应/恢复时间(3/3.6 s)。近年来,基于石墨烯或衍生物的二元纳米复合材料由于其在保持灵敏度的同时降低传感器工作温度的特性,在检测痕量VOCs方面有着广阔的应用前景。例如,Ashraf等。[22]报道了一种新型的RGO/ZnWO3-HCHO气体传感器,在95°C下对10ppm的HCHO具有21.4%的高响应,所获得的响应与目标气体浓度(1-10ppm)呈线性关系。Wang等[23]用氧化石墨烯(GO)原位改性的介孔超薄SnO 2纳米片,在60℃下对100 ppm HCHO的响应值(Ra/Rg)高达2275。Sun等[24]采用基于溶液的自组装方法合成用于HCHO检测的RGO/ZnSnO3复合材料,在103°C下检测限为0.1ppm HCHO。Li等[25]制备了用于室温HCHO气体传感器的RGO/MoS2混合膜,对15ppm HCHO的响应率为4.6%。Song等人。[26]采用RGO改性硅纳米线合成了一种用于HCHO传感器的核壳结构,其检测下限低至0.035ppm。然而,尽管取得了相当大的进展,但理想的HCHO气体传感器依然面临着巨大的挑战,包括高选择性的稳定日常应用、在室温下工作时不受湿度干扰。
本论文以低成本的RGO薄膜为基础,设计并制作了一种新型的HCHO气体传感器。为了提高灵敏度,采用叉指电极结构。采用盐酸羟胺盐(HA-HCl)改性聚偏二氟乙烯(PVDF)多孔膜,保证了传感器的选择性。为了获得最佳的HCHO灵敏度,对四种羟胺盐进行了实验比较。在室温下由乙醇、甲醇、甲苯、乙腈和异丙醇等常见挥发性有机物产生的干扰较小。HCl蒸气由HA-HCl与HCHO之间的氧化反应生成,影响RGO片的载流子密度,从而为HCHO的选择性检测提供连续的传感信号。在室温、相对湿度(RH)为39.5%的环境条件下,RGO/HA-HCl传感器的检出限为0.023ppm,虽然RGO/HA-HCl传感器对HCHO特别敏感,但类似的原理也可用于设计其他特定VOCs的气体传感器.
2.实验部分
2.1 化学品和试剂
实验中所用的化学试剂均为分析级。氧化石墨烯(GO)购自NanoInnova Technologies SL(西班牙马德里)。叉指电极(1cmtimes;1cm的氧化铝基片,电极丝宽度90mu;m,5对电极)购自MECART Sensor Technologies SL(中国广州)。
2.2 还原氧化石墨烯的合成
根据所报告的程序,采用化学还原法合成了RGO片材。[27]简单地说,用超声波浴(180 W)30分钟,将GO分散在去离子水中(0.1 mgbull;mL-1,10 mL)。然后将10 mg抗坏血酸(L-AA)加入GO分散液中,用超声浴(180 W)浸泡2 h。在此之后,溶液在26℃下保持48h。最后用去离子水漂洗几次,在60℃下干燥静置一晚。
2.3 材料特性
用场发射扫描电子显微镜(FE-SEM,S-4800N,日立,日本)和场发射透射电子显微镜(FE-TEM,JEM-2100F,日本JEOL)对样品的形貌和微观结构进行了表征。用X射线衍射(XRD-Rigaku-Ultima-IV,日本,40KV/20ma,Cu-Karadiation)获得了样品的相结构和晶体结构。用X射线光电子能谱仪(ESCALAB 250,美国)对样品的表面组成进行了观测。样品的结构变化用拉曼光谱(RENISHAW in Via Raman Microscope,UK)进行了表征。采用气相色谱-质谱法(GC-MS, tsq8000, Thermofisher, USA)对氧化反应产物进行了表征
2.4 RGO/HA-HCl传感器的构造
RGO/HA-HCl传感器示意图如图1所示,传感器由羟胺盐、多孔PVDF膜、RGO片和交错电极组成。在制备过程中,将RGO薄片在去离子水中以超声波浴(180 W)在室温下溶解2小时,并将悬浮液(0.1 mgbull;mL-1)喷涂在交错电极上。然后,将盐酸羟胺(NH2OHbull;HCl)溶于甲醇(80mgbull;mL-1)中,将溶液滴入悬浮在RGO膜上的PVDF膜(孔径0.2mu;m)上。利用多孔PVDF膜建立了HCl气态的气体通道。此外,在RGO和PVDF膜之间插入了两个厚度为0.2 mm的间隔物
2.5气敏测试系统
我们设计了气敏测试系统,并在方案2中进行了说明。它由密封式气敏室、充气管和数据采集系统组成。气敏室由100ml电解槽制成,电解槽有进、排气口。用铂电极将传感器电极连接到电阻测量设备上,数据由Keithley 2701数据采集系统记录。由[Ro-Rg]/Rotimes;100%定义的传感器灵敏度,其中Ro表示清洁空气中的初始电阻,Rg表示VOCs存在时的电阻。以干燥空气为载气,用盐溶液调节试验箱湿度。气敏试验前,将RGO/HA-HCl传感器安装在气敏室内。
保持稳定的载气流量和所需的湿度,直到传感器的电阻保持恒定。将不同流速的HCHO与载气(300 ml/min)混合,引入气敏室进行测试。将RGO/HA-HCl传感器置于分析气体中,固定进样时间为500秒,回收时间为500秒。RGO/HA-HCl传感器的初始电阻约为30-50kOmega;,近似线性的I-V关系表明RGO和叉指电极之间存在ohmic contacts(图S1)。所有的测试都是在室温下进行的。
3 结果和讨论
3.1 材料特性
在交指电极上沉积的GO、RGO片和RGO片的形貌如图1所示,GO片材由于表面能的自然减少而呈现出均匀的褶皱层状结构(图1a)由于功能化的sp3特性,RGO片材是均匀的,并显示出一定的纹理[28]。如图1b所示。沉积在叉指电极上的RGO片显示出许多褶皱(图1c),这可能是由于溶剂蒸发过程中与表面张力相关的干燥应力引起的[29] HR-TEM图像(图1d,e)可以进一步揭示RGO片的详细结构。图1d显示,大型RGO板与褶皱和层压板部分重叠,这与我们的FE-SEM观察结果一致。图1e中的高分辨率TEM图像显示了有序区的石墨层结构,RGO样品的d间距为0.38nm。具有明确衍射点的选区电子衍射(SAED)图案(图1f)说明了还原GO的结晶度,这与文献[30]很好地一致。
用x射线衍射(XRD)分析了GO,RGO薄膜的晶体结构。如图2a所示,GO(蓝色曲线)的x射线衍射图由分配到(002)平面的2theta;=11.7°处的尖峰所支配。RGO(红色曲线)的XRD图谱在2theta;=24.0°处有一个尖峰,在较高的衍射角处有一个宽峰。尖峰的层间距为3.81Aring;,接近石墨的(002)衍射峰(d间距为3.35Aring;)[27]。这些x射线衍射结果表明,RGO和GO之间存在明显的差异,这是由于GO的剥落和还原以及大多数含氧基团的去除[31]。
用拉曼光谱表征了GO-RGO薄膜的结构变化。根据文献报道,G波段(1363 cm-1)为sp - 2键碳原子的E2g模式,D波段(1594 cm-1)为对称的A1g模式[32]。 图2b表明,D波段和G波段(ID/IG)的相对强度比从0.76明显增加到1.09,这进一步证实了从GO到RGO的相对强度确实降低了.用x射线光电子能谱(XPS)表征氧化石墨烯的还原。如图2c和d所示,将C=C/C、C - O、C=O和C(O)O组分别分配到284.6、286.6、288.3和289.0 eV四个不同的峰值。还原后,C-O、C=O和C(O)O峰均明显降低。这些结果证实了氧化石墨烯在还原反应后大部分转化为还原氧化石墨烯。我们认为RGO的纯度对传感器的灵敏度至关重要,因为它会影响基线的噪声水平。
3.2气敏性能研究
图3a显示了叉指RGO传感器的响应. 用羟胺盐改性PVDF膜,由于响应机理的改变,其响应更加灵敏.另一方面,没有HA-HCl,反应几乎消失。不同类型的羟胺,包括1.盐酸羟胺(NH2OHbull;HCl)2.羟胺(NH2OH)3.硫酸羟胺(NH2OHbull;H2SO4)和4.邻苄基羟胺盐酸盐(NH2OC7H7bull;HCl)比较它们对HCHO的敏感性图3b显示盐酸羟胺对RGO传感器的灵敏度最高. 邻苄基羟胺盐酸盐具有较低的灵敏度,而羟胺和硫酸羟胺对HCHO几乎没有反应。不同灵敏度的原因将在第3.3节中讨论,然后选择了盐酸羟胺(NH2OHbull;HCl)作为超灵敏HCHO气体传感器的制备材料,以进行进一步的实验。
为了研究RGO/HA-HCl传感器对HCHO的选择性,在室温下暴露不同VOCs。图4a显示了四种VOCs与HCHO的不同响应曲线,包括甲醇、乙醇、甲苯和二氯甲烷。还包括对水蒸气的反应。测量的响应及其暴露浓度如图4b所示。RGO/HA-HCl传感器对HCHO的选择性是其它五种气体的1000倍,只有HCHO的正响应最高,其他挥发性有机物和水蒸气的反应都是阴性的,表明电阻增加。
在以前的报告中,专门设计或化学修饰的半导体被开发出来以增强传感器对目标气体样品的选择性[18、34、35] 例如,各向异性形成的颗粒提供不同的孔径以提供尺寸选择的气体传感器,允许较小的气体分子向传感器表面扩散。为了提高选择性,使用贵金属纳米粒子来增加分析物的吸附能[36-38] 而在我们的研究中,选择性是由HCHO和HA HCl通过氧化反应(式1)的高选择性反应控制的,而灵敏度则是通过使用低成本、低功耗、叉指电极结构来提高的。值得注意的是,PVDF膜上的氧化反应释放出盐酸(HCl),暴露在盐酸中可能导致RGO电导率的增加。值得注意的是,RGO片对单电子氧化剂(包括HCl)敏感[39]。作为一种p型半导体,强酸表面改性可以提高大部分载流子(空穴)的密度,从而提高RGO的导电性。稍后,我们将传感器暴露在HCl蒸汽来确认这一点。更重要的是,氧化反应对HCHO特别有效,即使在高浓度的干扰VOCs下,也能保证对HCHO独特的传感器选择性。此外,高浓度的干扰VOCs会使RGO膜膨胀或注入电子,从而降低RGO膜的导电性
为了系统地研究对HCHO的敏感性,将RGO/HA-HCl传感器暴露于HCHO浓度从1ppm到16ppm的变化中,图5a表明,在16 ppm HCHO下,RGO/HAHCl传感器的最大响应为75%。当引入HCHO并在停止HCHO注气后恢复原状时,响应增强。与预期一样,随着HCHO浓度的增加,RGO/HA-HCl传感器的响应逐渐增强。将HCHO引入传感室500秒,然后吹入空气。RGO/HA HCl传感器对16ppm HCHO的响应曲线如图S2f所示。当HCHO浓度增加到16ppm时,回收时间也增加到1211s。有趣的是观察暴露和净化之间的不同反应曲线,曝光曲率使信号逐渐增大,直到达到最大响应。这个曲率是由HCHO与HA-HCl的扩散和反应以及HCl在RGO表面的吸附决定的。然而,清除响应曲线似乎显示了两步恢复过程
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[414400],资料为PDF文档或Word文档,PDF文档可免费转换为Word
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。