柯西型中值定理的一个族外文翻译资料

 2022-05-05 22:06:48

J. Math. Anal. Appl. 306 (2005) 730–739

www.elsevier.com/locate/jmaa

A family of the Cauchy type mean-value theorems

Josip E. Pecariˇcacute; a, Ivan Pericacute; b, H.M. Srivastava c,

  1. Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia b Faculty of Chemical Engineering and Technology, University of Zagreb, Maruliacute;cev trg. 19,
  2. Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3P4, Canada

Received 6 October 2004

Available online 4 February 2005

Submitted by William F. Ames

Abstract

The Cauchy type mean-value theorems for the Riemann–Liouville fractional derivative are de-duced here from known mean-value theorems of the Lagrange type. A general method for deducing these Cauchy type formulas is extracted. Two Cauchy type formulas are then deduced without a priori knowledge about the Lagrange type mean-value theorems.

2004 Elsevier Inc. All rights reserved.

Keywords: Cauchy mean-value theorem; Lagrange mean-value theorem; Riemann–Liouville fractional integral and fractional derivative; Newton–Cotes quadrature formulas; Jensenrsquo;s inequality; Trapezoidal rule

1. Introduction

Mean-value theorems are of great importance in mathematical analysis. In particular, the Lagrange type and the Cauchy type mean-value theorems are most frequently used. The usual approach is to prove first the Lagrange type mean-value theorems and then deduce from them the Cauchy type mean-value theorems. As a typical example of this method,

  • Corresponding author.

E-mail addresses: pecaric@hazu.hr (J.E. Pecariˇc),acute; iperic@pbf.hr (I. Peric),acute; hmsri@uvvm.uvic.ca,

harimsri@math.uvic.ca (H.M. Srivastava).

0022-247X/$ – see front matter 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmaa.2004.10.018

J.E. Peˇcariacute; et al. / J. Math. Anal. Appl. 306 (2005) 730–739

731

in Section 2, we first show how this approach works for the Riemann–Liouville fractional derivative. Then, in Section 3, we extract a general abstract method which contains the crucial step in this procedure. Finally, in Section 4, we make use of the perfect symmetry of the Cauchy type mean-value theorems in order to show that, in many cases, one can easily guess the form of the Cauchy type mean-value theorem and then deduce from it the exact form of the Lagrange type mean-value theorem.

  1. Generalized Cauchy type formulas for the Riemann–Liouville fractional derivative

Let us first consider the Riemann–Liouville fractional integral of order

minus;alpha;, that is,

Dalpha; f (x)

=

I minus;alpha; f (x).

a

a

Here the Riemann–Liouville fractional integral operator Iabeta; is defined as follows:

x

(x minus; t )beta;minus;1f (t ) dt

Iabeta; f (x) := Gamma; (beta;) a

1

(x gt; a; a isin; R; beta; isin; R )

(1)

and

Dalpha; f (x)

=

DnI nminus;alpha; f (x)

a

a

D :=

d

; n minus; 1 alpha; lt; n; n isin; N := {1, 2, 3, . . .}

(2)

d x

with, of course,

Ia0f (x) = f (x).

The sequential fractional derivative is denoted by (see, for example, [5, p. 86 et seq.])

Danalpha; := Daalpha; Da(nminus;1)alpha;n isin; N0 := N cup; {0} .

(3)

Let be a real interval and alpha; isin; [0, 1]. Let F (Ω ) denote the space of Lebesgue mea-surable functions with domain in and suppose that x0 isin; . Then a function f is called

alpha;-continuous at x0 if there exists lambda; isin; [0, 1 minus; alpha;) for which the function g given by

g(x) = |x minus; x0|lambda;f (x)

is continuous at x0. Thus, in the present terminology, the function f is called 1-continuous at x0 if it is continuous at x<su

剩余内容已隐藏,支付完成后下载完整资料</su


译文

柯西型中值定理的一个族

JosiP.E.佩克·阿里奇A,佩里克B,H.M. Srivastava C,A.

萨格勒布大学纺织技术系,皮埃奥蒂耶娃6,克罗地亚萨格勒布H-10000

萨格勒布大学化学工程与技术学院,Marulic EV Trg。19,

克罗地亚萨格勒布H-10000

维多利亚大学数学与统计系,Victoria,不列颠哥伦比亚,V8W 3P4,加拿大

2004年10月6日收到

网上2005年2月4日由William F. Ames提交

摘要

本文从拉格朗日型的已知中值定理出发,导出了黎曼-刘维尔分数阶导数的柯西型中值定理。导出了推导这些柯西型公式的一般方法。在没有拉格朗日型中值定理先验知识的前提下,推导出两个柯西型公式。

2004爱思唯尔公司版权所有。

关键词:柯西中值定理;拉格朗日中值定理;黎曼-刘维尔分数积分和分数导数;牛顿-科特斯求积公式;延森不等式;Trapezoidal规则

1、引言

中值定理在数学分析中具有重要的意义。特别地,最常用的是拉格朗日型和柯西型中值定理。通常的方法是首先证明拉格朗日型中值定理,然后从中推导出柯西型中值定理。作为这种方法的一个典型例子,

对应作者。

(电子邮件地址:PICARICH@ HAZUHR(J.E.PEC·ARIC),IpICIC@ PBF.HR(I. Pric),HMSRIIUVVM UVIC.CA,HARIMSRIH-MATH.UVIC.CA(H.M. Srivastava)。

022-247X/$-见前面事项2004爱思唯尔公司保留所有权利。DOI:101016/J.JMAA.2014.10018)

在第2节中,我们首先展示了这种方法对于黎曼-刘维尔分数阶导数的工作原理。然后,在第3节中,我们提取了一个通用的抽象方法,其中包含了这个过程中的关键步骤。最后,在第4节中,我们利用柯西型中值定理的完全对称性,说明在许多情况下,人们可以很容易地猜出柯西型中值定理的形式,然后从中推导出拉格朗日型中值定理的精确形式。

2、黎曼- Liouville分数阶导数的广义柯西型公式

让我们先考虑阶alpha;黎曼—Liouville分数次积分,即Dalpha;f (x) = I minus;alpha;f (x).

a

a

这里,黎曼- Liouville分数阶积分算子Ibeta;定义如下:

D = n minus; 1 le; alpha;lt; n; n isin; N := {1, 2, 3,.. .}

当然了 f (x) = f (x).顺序分数导数由(参见,例如,[ 5,p 86 et eq)]表示。

(n isin; N0 := N cup; {0}).

设为实区间alpha;isin;〔0,1〕。设F(alpha;)表示勒贝格域上的可积函数的空间,并假设X0。函数f在x0处称为alpha;-连续,如果存在由函数G给出的alpha;[ 0, 1,alpha;]。

g(x) = |x minus; x0|lambda;f (x)(2)

在x0处是连续的。因此,在目前的术语中,函数f在x0处被称为1-连续,如果它在x0处是连续的。此外,如果函数X是alpha;-连续的,则函数f称为alpha;-连续的。为了方便起见,我们现在在alpha;上表示alpha;-连续函数类

对于alpha;,函数f称为的alpha;奇异。

对于alpha;,函数f称为alpha;alpha;的alpha;奇异。

让alpha;isin;isin;R ,和Ωsub;,这样,Ω对于任意 Xisin;Ele;x则我们写

a Ialpha;(E) = f f isin; F (Ω) 和Ialpha;f (x) lt; infin; (forall;x isin; E) , (4)

a

其中,f,(f)表示域中勒贝格可测函数的空间。最近,Trujillo等人。〔6〕证明了以下结论。

定理1(广义中值定理)。设alpha;alpha;〔0, 1〕和fomega;c(a,b]

Dalpha;F[C]〔A,B〕。然后

(5)

一个具有小于plusmn;x的x〔a,b〕

定理2(广义泰勒公式)。设alpha;〔0, 1〕和nn n为f满足(a,b]满足下列条件的一个连续函数:

一)djalpha;fisin;(a,b)和c aialpha;djalpha;fisin;〔a,b〕for j=1,hellip;,n。

(二)d(n 1)的连续在线alpha;f is〔a,b〕。

(三)如果alpha;<1/2,然后,for each jisin;{1,hellip;,n} such that(J 1)D(alpha;le;1,j+1)(x)是alpha;f

连续gamma;-gamma;(x =(1minus;a for some(J 1)gamma;le;alpha;le;1)或alpha;-阶奇异协会。

然后,对每个xisin;(a,b),

在我们的调查中,我们提出了一些相关的结果,通过使用在[4 ]中给出的我

们首先陈述我们的第一个结果如下。

定理3。设alpha;alpha;〔0, 1〕和f f,Gεc(a,b]是这样的

f

for every x isin; [a, b].

然后,对于每一个x*(a,b],存在一个ZEA(Aomega;chi;times;x)。

比如

证明。设x[a,b]是固定的。由K1和K2表示以下函数:

K1 = f (x) minus;[(x minus; a)1minus;alpha;f (x)](a )(x minus; a)alpha;minus;1

和K2 = g(x) minus; [(x minus; a)1minus;alpha;g(x)](a )(x minus; a)alpha;minus;1.

我们考虑函数f(t)由F (t ) = K2f (t ) minus; K1g(t) t isin; [a, b]

由于F和G满足定理1中的条件,所以对于F是相同的,所以我们有

对于一些ZEA(Aomega;ztimes;x)。这给了我们

其中定理3的断言(9)很容易跟随。

推论1。设alpha;alpha;〔0, 1〕和f f,Gεc(a,b]是这样的

当 对于每一个x[a,b]。

然后,对于每一个x*(a,b],存在一个ZEA(A)

证明。在(x(a))alpha;-1f(x)和g(x)((x,a))alpha;1g(x)替换f(x)时,定理3很容易得到推论1。

定理4。假设函数f和g满足定理2中的条件,其中

D(n 1)alpha;g(x) /= 0 for every x isin; [a, b].

a

然后,对于每一个x*(a,b],存在一个ZEA(Aomega;zomega;z),使得

证明。设X(A,B)固定。根据(7)定义的RN,我们用1和2表示以下函数:K1 = Rn(g; x, a) and K2 = Rn(f ; x, a),和并考虑函数f所定义的

F (t ) = K1f (t ) minus; K2g(t) t isin; [a, b]

利用由(7)定义的RN的线性性质,定理4的其余部分与定理3的证明一样。

定理4的一个简单结果由下面的推论给出。

外文原文

A family of the Cauchy type mean-value theorems

Josip E. Pecˇaricacute; a, Ivan Pericacute; b, H.M. Srivastava c,lowast;

a Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia

b Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicacute;ev trg. 19,

HR-10000 Zagreb, Croatia

c Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3P4, Canada

Received 6 October 2004

Available online 4 February 2005 Submitted by William F. Ames

Abstract

The Cauchy type mean-value theorems for the Riemann–Liouville fractional derivative are de- duced here from known mean-value theorems of the Lagrange type. A general method for deducing these Cauchy type formulas is extracted. Two Cauchy type formulas are then deduced without a priori knowledge about the Lagrange type mean-value theorems.

 2004 Elsevier Inc. All rights reserved.

Keywords: Cauchy mean-value theorem; Lagrange mean-value theorem; Riemann–Liouville fractional integral and fractional derivative; Newton–Cotes quadrature formulas; Jensenrsquo;s inequality; Trapezoidal rule

Introduction

Mean-value theorems are of great importance in mathematical analysis. In particular, the Lagrange type and the Cauchy type mean-value theorems are most frequently used. The usual approach is to prove first the Lagrange type mean-value theorems and then deduce from them the Cauchy type mean-value theorems. As a typical example of this method,

*Corresponding author.

E-mail addresses: pecaric@hazu.hr (J.E. Pecˇaricacute;), iperic@pbf.hr (I. Pericacute;), hmsri@uvvm.uvic.ca, harimsri@math.uvic.ca (H.M. Srivastava).

0022-247X/$ – see front matter  2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2004.10.018

in Section 2, we first show how this approach works for the Riemann–Liouville fractional derivative. Then, in Section 3, we extract a general abstract method which contains the crucial step in this procedure. Finally, in Section 4, we make use of the perfect symmetry of the Cauchy type mean-value theorems in order to show that, in many cases, one can easily guess the form of the Cauchy type mean-value theorem and then deduce from it the exact form of the Lagrange type mean-value the

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[462806],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。