J. Math. Anal. Appl. 306 (2005) 730–739
www.elsevier.com/locate/jmaa
A family of the Cauchy type mean-value theorems
Josip E. Pecariˇcacute; a, Ivan Pericacute; b, H.M. Srivastava c,
- Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia b Faculty of Chemical Engineering and Technology, University of Zagreb, Maruliacute;cev trg. 19,
- Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3P4, Canada
Received 6 October 2004
Available online 4 February 2005
Submitted by William F. Ames
Abstract
The Cauchy type mean-value theorems for the Riemann–Liouville fractional derivative are de-duced here from known mean-value theorems of the Lagrange type. A general method for deducing these Cauchy type formulas is extracted. Two Cauchy type formulas are then deduced without a priori knowledge about the Lagrange type mean-value theorems.
2004 Elsevier Inc. All rights reserved.
Keywords: Cauchy mean-value theorem; Lagrange mean-value theorem; Riemann–Liouville fractional integral and fractional derivative; Newton–Cotes quadrature formulas; Jensenrsquo;s inequality; Trapezoidal rule
1. Introduction
Mean-value theorems are of great importance in mathematical analysis. In particular, the Lagrange type and the Cauchy type mean-value theorems are most frequently used. The usual approach is to prove first the Lagrange type mean-value theorems and then deduce from them the Cauchy type mean-value theorems. As a typical example of this method,
- Corresponding author.
E-mail addresses: pecaric@hazu.hr (J.E. Pecariˇc),acute; iperic@pbf.hr (I. Peric),acute; hmsri@uvvm.uvic.ca,
harimsri@math.uvic.ca (H.M. Srivastava).
0022-247X/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2004.10.018
J.E. Peˇcariacute; et al. / J. Math. Anal. Appl. 306 (2005) 730–739 |
731 |
in Section 2, we first show how this approach works for the Riemann–Liouville fractional derivative. Then, in Section 3, we extract a general abstract method which contains the crucial step in this procedure. Finally, in Section 4, we make use of the perfect symmetry of the Cauchy type mean-value theorems in order to show that, in many cases, one can easily guess the form of the Cauchy type mean-value theorem and then deduce from it the exact form of the Lagrange type mean-value theorem.
- Generalized Cauchy type formulas for the Riemann–Liouville fractional derivative
Let us first consider the Riemann–Liouville fractional integral of order |
minus;alpha;, that is, |
|||||||
Dalpha; f (x) |
= |
I minus;alpha; f (x). |
||||||
a |
a |
|||||||
Here the Riemann–Liouville fractional integral operator Iabeta; is defined as follows: |
||||||||
x |
(x minus; t )beta;minus;1f (t ) dt |
|||||||
Iabeta; f (x) := Gamma; (beta;) a |
||||||||
1 |
||||||||
(x gt; a; a isin; R; beta; isin; R ) |
(1) |
|||||||
and |
||||||||
Dalpha; f (x) |
= |
DnI nminus;alpha; f (x) |
||||||
a |
a |
|||||||
D := |
d |
; n minus; 1 alpha; lt; n; n isin; N := {1, 2, 3, . . .} |
(2) |
|||||
d x
with, of course,
Ia0f (x) = f (x).
The sequential fractional derivative is denoted by (see, for example, [5, p. 86 et seq.])
Danalpha; := Daalpha; Da(nminus;1)alpha;n isin; N0 := N cup; {0} . |
(3) |
Let Ω be a real interval and alpha; isin; [0, 1]. Let F (Ω ) denote the space of Lebesgue mea-surable functions with domain in Ω and suppose that x0 isin; Ω . Then a function f is called
alpha;-continuous at x0 if there exists lambda; isin; [0, 1 minus; alpha;) for which the function g given by
g(x) = |x minus; x0|lambda;f (x)
is continuous at x0. Thus, in the present terminology, the function f is called 1-continuous at x0 if it is continuous at x<su
剩余内容已隐藏,支付完成后下载完整资料</su
译文
柯西型中值定理的一个族
JosiP.E.佩克·阿里奇A,佩里克B,H.M. Srivastava C,A.
萨格勒布大学纺织技术系,皮埃奥蒂耶娃6,克罗地亚萨格勒布H-10000
萨格勒布大学化学工程与技术学院,Marulic EV Trg。19,
克罗地亚萨格勒布H-10000
维多利亚大学数学与统计系,Victoria,不列颠哥伦比亚,V8W 3P4,加拿大
2004年10月6日收到
网上2005年2月4日由William F. Ames提交
摘要
本文从拉格朗日型的已知中值定理出发,导出了黎曼-刘维尔分数阶导数的柯西型中值定理。导出了推导这些柯西型公式的一般方法。在没有拉格朗日型中值定理先验知识的前提下,推导出两个柯西型公式。
2004爱思唯尔公司版权所有。
关键词:柯西中值定理;拉格朗日中值定理;黎曼-刘维尔分数积分和分数导数;牛顿-科特斯求积公式;延森不等式;Trapezoidal规则
1、引言
中值定理在数学分析中具有重要的意义。特别地,最常用的是拉格朗日型和柯西型中值定理。通常的方法是首先证明拉格朗日型中值定理,然后从中推导出柯西型中值定理。作为这种方法的一个典型例子,
对应作者。
(电子邮件地址:PICARICH@ HAZUHR(J.E.PEC·ARIC),IpICIC@ PBF.HR(I. Pric),HMSRIIUVVM UVIC.CA,HARIMSRIH-MATH.UVIC.CA(H.M. Srivastava)。
022-247X/$-见前面事项2004爱思唯尔公司保留所有权利。DOI:101016/J.JMAA.2014.10018)
在第2节中,我们首先展示了这种方法对于黎曼-刘维尔分数阶导数的工作原理。然后,在第3节中,我们提取了一个通用的抽象方法,其中包含了这个过程中的关键步骤。最后,在第4节中,我们利用柯西型中值定理的完全对称性,说明在许多情况下,人们可以很容易地猜出柯西型中值定理的形式,然后从中推导出拉格朗日型中值定理的精确形式。
2、黎曼- Liouville分数阶导数的广义柯西型公式
让我们先考虑阶alpha;黎曼—Liouville分数次积分,即Dalpha;f (x) = I minus;alpha;f (x).
a
a
这里,黎曼- Liouville分数阶积分算子Ibeta;定义如下:
D = n minus; 1 le; alpha;lt; n; n isin; N := {1, 2, 3,.. .}
当然了 f (x) = f (x).顺序分数导数由(参见,例如,[ 5,p 86 et eq)]表示。
(n isin; N0 := N cup; {0}).
设为实区间alpha;isin;〔0,1〕。设F(alpha;)表示勒贝格域上的可积函数的空间,并假设X0。函数f在x0处称为alpha;-连续,如果存在由函数G给出的alpha;[ 0, 1,alpha;]。
g(x) = |x minus; x0|lambda;f (x)(2)
在x0处是连续的。因此,在目前的术语中,函数f在x0处被称为1-连续,如果它在x0处是连续的。此外,如果函数X是alpha;-连续的,则函数f称为alpha;-连续的。为了方便起见,我们现在在alpha;上表示alpha;-连续函数类
对于alpha;,函数f称为的alpha;奇异。
对于alpha;,函数f称为alpha;alpha;的alpha;奇异。
让alpha;isin;isin;R ,和Ωsub;,这样,Ω对于任意 Xisin;Ele;x则我们写
a Ialpha;(E) = f f isin; F (Ω) 和Ialpha;f (x) lt; infin; (forall;x isin; E) , (4)
a
其中,f,(f)表示域中勒贝格可测函数的空间。最近,Trujillo等人。〔6〕证明了以下结论。
定理1(广义中值定理)。设alpha;alpha;〔0, 1〕和fomega;c(a,b]
Dalpha;F[C]〔A,B〕。然后
(5)
一个具有小于plusmn;x的x〔a,b〕
定理2(广义泰勒公式)。设alpha;〔0, 1〕和nn n为f满足(a,b]满足下列条件的一个连续函数:
一)djalpha;fisin;(a,b)和c aialpha;djalpha;fisin;〔a,b〕for j=1,hellip;,n。
(二)d(n 1)的连续在线alpha;f is〔a,b〕。
(三)如果alpha;<1/2,然后,for each jisin;{1,hellip;,n} such that(J 1)D(alpha;le;1,j+1)(x)是alpha;f
连续gamma;-gamma;(x =(1minus;a for some(J 1)gamma;le;alpha;le;1)或alpha;-阶奇异协会。
然后,对每个xisin;(a,b),
在我们的调查中,我们提出了一些相关的结果,通过使用在[4 ]中给出的我
们首先陈述我们的第一个结果如下。
定理3。设alpha;alpha;〔0, 1〕和f f,Gεc(a,b]是这样的
f
for every x isin; [a, b].
然后,对于每一个x*(a,b],存在一个ZEA(Aomega;chi;times;x)。
比如
证明。设x[a,b]是固定的。由K1和K2表示以下函数:
K1 = f (x) minus;[(x minus; a)1minus;alpha;f (x)](a )(x minus; a)alpha;minus;1
和K2 = g(x) minus; [(x minus; a)1minus;alpha;g(x)](a )(x minus; a)alpha;minus;1.
我们考虑函数f(t)由F (t ) = K2f (t ) minus; K1g(t) t isin; [a, b]
由于F和G满足定理1中的条件,所以对于F是相同的,所以我们有
对于一些ZEA(Aomega;ztimes;x)。这给了我们
其中定理3的断言(9)很容易跟随。
推论1。设alpha;alpha;〔0, 1〕和f f,Gεc(a,b]是这样的
当 对于每一个x[a,b]。
然后,对于每一个x*(a,b],存在一个ZEA(A)
证明。在(x(a))alpha;-1f(x)和g(x)((x,a))alpha;1g(x)替换f(x)时,定理3很容易得到推论1。
定理4。假设函数f和g满足定理2中的条件,其中
D(n 1)alpha;g(x) /= 0 for every x isin; [a, b].
a
然后,对于每一个x*(a,b],存在一个ZEA(Aomega;zomega;z),使得
证明。设X(A,B)固定。根据(7)定义的RN,我们用1和2表示以下函数:K1 = Rn(g; x, a) and K2 = Rn(f ; x, a),和并考虑函数f所定义的
F (t ) = K1f (t ) minus; K2g(t) t isin; [a, b]
利用由(7)定义的RN的线性性质,定理4的其余部分与定理3的证明一样。
定理4的一个简单结果由下面的推论给出。
外文原文
A family of the Cauchy type mean-value theorems
Josip E. Pecˇaricacute; a, Ivan Pericacute; b, H.M. Srivastava c,lowast;
a Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
b Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicacute;ev trg. 19,
HR-10000 Zagreb, Croatia
c Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3P4, Canada
Received 6 October 2004
Available online 4 February 2005 Submitted by William F. Ames
Abstract
The Cauchy type mean-value theorems for the Riemann–Liouville fractional derivative are de- duced here from known mean-value theorems of the Lagrange type. A general method for deducing these Cauchy type formulas is extracted. Two Cauchy type formulas are then deduced without a priori knowledge about the Lagrange type mean-value theorems.
2004 Elsevier Inc. All rights reserved.
Keywords: Cauchy mean-value theorem; Lagrange mean-value theorem; Riemann–Liouville fractional integral and fractional derivative; Newton–Cotes quadrature formulas; Jensenrsquo;s inequality; Trapezoidal rule
Introduction
Mean-value theorems are of great importance in mathematical analysis. In particular, the Lagrange type and the Cauchy type mean-value theorems are most frequently used. The usual approach is to prove first the Lagrange type mean-value theorems and then deduce from them the Cauchy type mean-value theorems. As a typical example of this method,
*Corresponding author.
E-mail addresses: pecaric@hazu.hr (J.E. Pecˇaricacute;), iperic@pbf.hr (I. Pericacute;), hmsri@uvvm.uvic.ca, harimsri@math.uvic.ca (H.M. Srivastava).
0022-247X/$ – see front matter 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2004.10.018
in Section 2, we first show how this approach works for the Riemann–Liouville fractional derivative. Then, in Section 3, we extract a general abstract method which contains the crucial step in this procedure. Finally, in Section 4, we make use of the perfect symmetry of the Cauchy type mean-value theorems in order to show that, in many cases, one can easily guess the form of the Cauchy type mean-value theorem and then deduce from it the exact form of the Lagrange type mean-value the
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[462806],资料为PDF文档或Word文档,PDF文档可免费转换为Word
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。