Municipal solid waste management: Integrated analysis of environmental and economic indicators based on life cycle assessment
Michel Xocaira Paes a, b, *, Gerson Araujo de Medeiros b, **, Sandro Donnnini Mancini b, Ana Paula Bortoleto c, Jose A. Puppim de Oliveira a, d, e, Luiz Alexandre Kulay f
a Fundaccedil;ao Getulio Vargas (FGV), S~ ao Paulo School of Management (FGV/EAESP), S~ ao Paulo, Brazil~ b Institute of Science and Technology, Sao Paulo State University, Sorocaba, Brazil~
c
School of Civil Engineering, Architecture and Urban Design, University of Campinas, Campinas, Brazil d Fundaccedil;ao Getulio Vargas (FGV), Brazilian School of Public and Business Administration (FGV/EBAPE), Rio de Janeiro, Brazil~
e Institute for Global Public Policy, Fudan University, China f Chemical Engineering Department, Polytechnic School, University of Sao Paulo (USP), S~ ao Paulo, Brazil~
a r t i c l e i n f o |
a b s t r a c t |
Article history: Received 12 August 2019 Received in revised form 17 December 2019 Accepted 21 December 2019 Available online 26 December 2019 Handling editor: CT Lee Keywords: Environmental life cycle assessment Life cycle costing Environmental and economic performance indicators Municipal solid waste management Public policy |
This paper develops a method to analyze municipal solid waste management systems (MSWMS) that integrates environmental and economic indicators using Life Cycle Assessment (LCA) and Life Cycle Costing (LCC). The method was tested in the city of Sorocaba, Brazil, a medium size municipality typical of many developing countries. Environmental impacts were analyzed considering system expansion, which combined the aspects of primary production and recycling processes with the impacts of MSWMS. The economic analysis included operating and investment costs to the costs of environmental externalities, thus enabling the analysis of total costs to society. An integrated analysis of environmental indicators revealed that the most significant reductions in environmental impacts occurred in the scenarios with higher rates of reuse of dry waste through recycling (70%), which lowered these impacts by up to 50% when compared to the current scenario. An analysis of economic performance indicated that the two scenarios that combined the highest recycling goals with greater transport efficiency and more composting yielded the best results, reducing the total social costs by 31% and 33%, respectively. Lastly, the integration of environmental and economic analyses revealed that the best results are obtained by a combination of composting, mechanical biological treatment and recycling, which would reduce the impacts of MSWMS by up to 33.7 points per invested dollar. The results supports the application of this proposed integrate approach to improve the current solid waste management system in Sorocaba and in other cities with a similar system and waste generation. copy; 2019 Elsevier Ltd. All rights reserved. |
1. Introduction
Significant innovations in waste management have emerged in the last decade to address the growing demand for materials and counteract the environmental and social impacts of consumption-
* Corresponding author. Unesp, Instituto de Ciencia e Tecnologia, C^ ampus de^ Sorocaba, Avenida Tres de Marccedil;o, 511 - Alto da Boa Vista, Sorocaba, SP, CEP 18087-^ 180, Brazil. ** Corresponding author. E-mail addresses: michelxocaira@gmail.com (M.X. Paes), gerson.medeiros@ unesp.br (G.A. de Medeiros). https://doi.org/10.1016/j.jclepro.2019.119848 0959-6526/copy; 2019 Elsevier Ltd. All rights reserved. |
based economies (Cramer, 2013; Lauridsen and Joslash;rgensen, 2010; Puppim de Oliveira, 2017, 2019). Programs involving zero waste and the diversion of waste from landfills have gained momentum in response to increasing urban densification and the growing value of space in the worldrsquo;s largest cities. Moreover, environmental regulations and the indisputable depletion of several material resources confirm the benefits of converting end-of-life waste from anthropic processes into inputs that can and should be reincorporated either into their own original production cycles or into those of other producer or consumer goods (Andrews-Speed et al., 2012; EEA, 2014; Paes et al., 2019).
Cities around the world have made a series of efforts to improve solid waste management systems. In some EU countries such as Germany, Austria, Belgium, Denmark, the Netherlands and Sweden, the implementation of public policies has raised the rates of solid waste reuse, recycling, incineration (with energy recovery) and/or composting to 95% (Eurostat, 2019; Word Bank, 2013). What all these cases have in common is the adoption of practices for reduction, prevention and non-generation of solid waste (Cleary, 2010, 2014; Nessi et al., 2012, 2013). In 2014, the United States adopted the landfill alternative for 52% of their volume of solid waste, followed by recycling (26%), incineration with energy recovery (13%) and composting (9.0%) (EPA, 2018).
The most recent official estimates, published in 2017, indicated a daily generation of 166,000 tons of municipal solid waste (MSW) in Brazil. Out of this total, 63% was landfilled, about 18% was discarded in open-air dumps without any treatment, and 5.4% was treated in facilities for sorting, composting and recycling materials in order to be recovered. However, no information was obtained from about approximately 14% of the waste generated (SNIS, 2019). In the state of Sao Paulo, which has the highest gross domestic product (GDP)~ (US$
剩余内容已隐藏,支付完成后下载完整资料
城市固体废物管理:基于生命周期评估的环境和经济指标的综合分析
突出
bull;
介绍了一种基于LCA的固体废物管理性能分析工具。
bull;
获取并分析了运营成本、外部性和社会总成本。
bull;
以综合方式审查了每个备选方案的经济和环境问题。
bull;
最佳选择结合了堆肥、机械生物处理和回收。
bull;
与目前的情况相比,影响减少高达34点/美元。
概要
本文开发了一种分析城市固体废物管理系统(MSWMS)的方法,该系统使用生命周期评估 (LCA) 和生命周期成本核算 (LCC) 集成了环境和经济指标。该方法在巴西索罗卡巴市进行了测试,这是许多发展中国家典型的中等规模的城市。考虑到系统扩展,将初级生产和回收过程的各个方面与MSWMS的影响相结合,分析了环境影响。经济分析包括经营和投资成本与环境外部性成本,从而能够分析社会总成本。对环境指标的综合分析表明,环境影响减少最严重的是通过回收回收而使干废物再利用率较高的情况(70%),在回收时,这些影响降低了50%。与当前方案相比。对经济表现的分析表明,将最高的回收目标与更高的运输效率和更多的堆肥相结合,得出了最佳结果,使社会总成本分别降低了31%和33%。最后,环境和经济分析的整合表明,最好的结果是通过堆肥、机械生物处理和回收相结合获得的,这将使MSWMS的影响每投资减少33.7个百分点。美元。研究结果支持采用这一拟议的综合方法,以改进索罗萨巴和其他具有类似系统和废物产生的城市目前的固体废物管理系统。
关键字
环境生命周期评估
生命周期成本
环境与经济绩效指标
城市固体废物管理
公共政策
1. 简介
过去十年在废物管理方面出现了重大创新,以应对日益增长的材料需求,并抵消消费型经济体的环境和社会影响(Cramer,2013;劳里森和约尔根森,2010年;普皮姆·德奥利维拉, 2017, 2019.由于城市密度增加和世界最大城市空间价值的增长,涉及零废物和从垃圾填埋场转移废物的项目获得了势头。此外,环境法规和若干物质资源的无可争辩的消耗证实了将人类过程的报废废物转化为投入的好处,这些投入可以而且应该重新纳入自己的原始生产周期,也可以重新纳入其他生产者或消费品的生产周期(Andrews-Speed等人,2012年;EEA, 2014;佩斯等人,2019年。
世界各地的城市为改善固体废物管理系统做出了一系列努力。在德国、奥地利、比利时、丹麦、荷兰和瑞典等一些欧盟国家,公共政策的实施使固体废物的再利用、再循环、焚烧(能源回收)和/或堆肥率提高到95%(欧盟统计局,2019年;Word Bank, 2013.所有这些案例的共同点是采用减少、预防和不生成固体废物的做法(Cleary,2010,2014; Nessi等人, 2012, 2013.2014年,美国采用垃圾填埋替代方案,占固体废物总量的52%,其次是回收(26%),焚烧能源回收(13%)和堆肥 (9.0%)(EPA,2018年)。
2017年公布的最新官方估计显示,巴西每天产生166,000吨城市固体废物。其中63%为填土,约18%被丢弃在露天垃圾场,未经任何处理,5.4%在分类、堆肥和回收材料的设施中处理,以便回收。然而,没有从大约14%的废物中获得任何信息(SNIS,2019)。在国内生产总值(GDP)最高的圣保罗州(5270亿美元),人均年收入位居第二(12,075.00美元)(IBGE,2019年),在645个市镇中,只有9个市(圣保罗州,2015年,2017年)创造了约50%的MSW。除了共享类似的城市化概况外,这9个市镇现在都有50多万居民。其中包括索罗卡巴,该州第九大,占地456公里2,人口671,000人,人类发展指数(HDI)为0.798(IBGE,2019年),其经济以工业为基础。
与许多国家一样,巴西的市政或地方政府负责提供和控制 MSW 管理服务。这些行动以地方、区域和国家各级的立法、管理准则、目标和指标为基础,这些立法、管理准则、目标和指标一般对使活动业绩合理化和改进构成挑战(Guerrero等人,2013年)。分配给一个市镇固体废物收集、运输、分类、处理和处置活动的一套服务、基础设施和业务设施称为城市固体废物管理系统(例如,巴西,2010年);SNIS, 2019;世界银行,2013年。
因此,MSWMS非常复杂,其有效性并不总是易于测量、分析和监控。从环境角度来看,生命周期评估(LCA)技术已被证明是评估其绩效的适当工具,包括为改进其而设计的行动和场景的效果(Lazarevic等人,2012年;佩斯等人, 2014, 2018.LCA的适用范围及其诊断的定量性质,使得在与这些系统有关的管理和决策实践的日常日常工作中采用全面和准确的评估
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。