Digital Image Processing and Edge Detection
Digital Image Processing
Interest in digital image processing methods stems from two principal application areas:improvement of pictorial information for human interpretation; and processing of image data for storage, transmission, and representation for autonomous machine perception.
An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the intensity or gray level of the image at that point. When x, y, and the amplitude values of f are all finite, discrete quantities, we call the image a digital image. The field of digital image processing refers to processing digital images by means of a digital computer. Note that a digital image is composed of a finite number of elements, each of which has a particular location and value.These elements are referred to as picture elements,image elements, pels, and pixels. Pixel is the term most widely used to denote the elements of a digital image.
Vision is the most advanced of our senses, so it is not surprising that images play the single most important role in human perception. However,unlike humans, who are limited to the visual band of the electromagnetic (EM) spectrum,imaging machines cover almost the entire EM spectrum, ranging from gamma to radio waves. They can operate on images generated by sources that humans are not accustomed to associating with images.These include ultra-sound,electron microscopy,and computer-generated images.Thus,digital image processing encompasses a wide and varied field of applications.
There is no general agreement among authors regarding where image processing stops and other related areas, such as image analysis and computer vision,start.Sometimes a distinction is made by defining image processing as a discipline in which both the input and output of a process are images. We believe this to be a limiting and somewhat artificial boundary. For example, under this definition, even the trivial task of computing the average intensity of an image (which yields a single number) would not be considered an image processing operation. On the other hand, there are fields such as computer vision whose ultimate goal is to use computers to emulate human vision, including learning and being able to make inferences and take actions based on visual inputs.This area itself is a branch of artificial intelligence (AI) whose objective is to emulate human intelligence. The field of AI is in its earliest stages of infancy in terms of development, with progress having been much slower than originally anticipated. The area of image analysis (also called image understanding) is in be- tween image processing and computer vision.
There are no clear cut boundaries in the continuum from image processing at one end to computer vision at the other. However, one useful paradigm is to consider three types of computerized processes in this continuum:low-, mid-,and high level processes.Low-level processes involve primitive operations such as image preprocessing to reduce noise, contrast enhancement, and image sharpening. A low-level process is characterized by the fact that both its inputs and outputs are images. Mid-level processing on images involves tasks such as segmentation (partitioning an image into regions or objects), description of those objects to reduce them to a form suitable for computer processing,and classification (recognition) of individual objects. A mid level process is characterized by the fact that its inputs generally are images, but its outputs are attributes extracted from those images (e.g., edges, contours, and the identity of individual objects). Finally, higher level processing involves “making sense”of an ensemble of recognized objects, as in image analysis, and, at the far end of the continuum, performing the cognitive functions normally associated with vision.
Based on the preceding comments, we see that a logical place of overlap between image processing and image analysis is the area of recognition of individual regions or objects in an image.Thus, what we call in this book digital image processing encompasses processes whose inputs and outputs are images and, in addition, encompasses processes that extract attributes from images, up to and including the recognition of individual objects. As a simple illustration to clarify these concepts,consider the area of automated analysis of text. The processes of acquiring an image of the area containing the text, preprocessing that image, extracting (segmenting) the individual characters,describing the characters in a form suitable for computer processing, and recognizing those individual characters are in the scope of what we call digital image processing in this book. Making sense of the content of the page may be viewed as being in the domain of image analysis and even computer vision, depending on the level of complexity implied by the statement “making sense.” As will become evident shortly, digital image processing, as we have defined it, is used successfully in a broad range of areas of exceptional social and economic value.
The areas of application of digital image processing are so varied that some form of organization is desirable in attempting to capture the breadth of this field. One of the simplest ways to develop a basic understanding of the extent of image processing applications is to categorize images according to their source (e.g., visual, X-ray, and so on). The principal energy source for images in use today is the electromagnetic energy spectrum. Other important sources of energy include acoustic, ultrasonic, and electronic (in the form of electron beams used in electro
剩余内容已隐藏,支付完成后下载完整资料
译文
数字图像处理与边缘检测
数字图像处理
数字图像处理方法的研究源于两个主要的应用领域:一是为了让人们能够解释而改善图片化的信息;二是为了让自动化机器理解而处理图片的数据存储,传输以及显示。
一幅图像可以被定义为一个二维函数f(x,y),x和y是空间坐标,而在任何一对空间坐标(x,y)上的幅值f 被称为这幅图像的强度或灰度。当x,y和幅值f全为有限的、离散的数值时,我们称这幅图为数字图像。数字图像处理是指通过数字电脑的途径处理数字图片,值得注意的是数字图像是由有限的数字元素组成的,拥有独立的坐标和价值,这些元素被称为图像元素、画面元素和像素。像素是最广泛用于显示数字图像元素的部分。
视觉是我们感官中最高级的,所以,毫无疑问图像在人类感知中扮演很重要的角色。然而,和人类对电磁光谱的有限的视觉带不同的是,图像机器覆盖了几乎全部的电磁光谱,范围从伽马到无线电波。它们能够加工来源于人类不能习惯的生成的图像连接。这些包括超声波、电子显微镜和计算机产生的图像。所以,数字图像处理涉及一个宽广和多样化的应用领域。
图像处理的终点和其它涉及的领域,例如图像分析和计算机视觉,再相关的创始人之间没有一致的看法。有时候一个范围的制定是通过处理的输入输出内容这个定律。我们相信者只是人造的界线。例如,在这个定义的基础上,甚至一个计算图像的平均强度的不复杂的任务都将不被认为是图像处理。另一方面,有些领域,比如计算机视觉,它的最高目标是用计算机去模拟人类视觉,包括了解和能够推断,并且基于视觉输入采取措施。这个领域本身是是人工智能的分支,它的目的是模仿人类智慧。人工智能领域的发展阶段处于最早期阶段,发展比想象中的预期慢得多。图像分析领域(也叫做图像理解)正处于图像处理和计算机视觉之间。
从图像处理到计算机视觉的连续过程中没有明确的界线。然而,在这个连续的统一体中可以考虑三种典型的计算处理(即低级、中级和高级处理)来区分。低级处理涉及初级操作,比如为了降低噪音的图像预处理,对比度增强和图像锐化。一个低级处理是以输入、输出都是图像为特点的处理。中级处理涉及分割(把图像分为不同区域或目标物)以及缩减对目标物的描述,以使其更适合计算机处理及对不同目标的分类(识别)。中级图像处理是以输入为图像,但输出是从这些图像中提取的特征(如边缘、轮廓及不同物体的标识等)为特点的。最后,高级处理涉及在图像分析中被识别物体的总体理解,以及执行与视觉相关的识别函数(处在连续统一体边缘)等。
根据上述的讨论,我们看到,图像处理和图像分析符合逻辑的重叠区域是图像中特定区域或物体的识别这一领域。所以,在研究中,我们称数字图像处理包括输入和输出均是图像的处理,另外,从图像中提取特征及识别特定物体的处理。举一个简单的文本自动分析方面的例子来具体说明这一概念。在自动分析文本时首先获取一幅包含文本的图像,对该图像进行预处理,提取(分割)字符,然后以适合计算机处理的形式描述这些字符,最后识别这些字符,而所有这些操作都在本文界定的数字图像处理的范围内。理解一页的内容可能要根据理解的复杂度从图像分析或计算机视觉领域考虑问题。这样,我们定义的数字图像处理的概念将在有特殊社会和经济价值的领域内通用。
数字图像处理的应用领域多种多样,所以文本在内容组织上尽量达到该技术应用领域的广度。阐述数字图像处理应用范围最简单的一种方法是根据信息源来分类(如可见光、X射线,等等)。在今天的应用中,最主要的图像源是电磁能谱,其他主要的能源包括声波、超声波和电子(以用于电子显微镜方法的电子束形式)。建模和可视化应用中的合成图像由计算机产生。
建立在电磁波谱辐射基础上的图像是最熟悉的,特别是X射线和可见光谱图像。电磁波可定义为以各种波长传播的正弦波,或者认为是一种粒子流,每个粒子包含一定(一束)能量,每束能量成为一个光子。如果光谱波段根据光谱能量进行分组,我们会得到下图1所示的伽马射线(最高能量)到无线电波(最低能量)的光谱。如图所示的加底纹的条带表达了这样一个事实,即电磁波谱的各波段间并没有明确的界线,而是由一个波段平滑地过渡到另一个波段。
图像获取是第一步处理。注意到获取与给出一幅数字形式的图像一样简单。通常,图像获取包括如设置比例尺等预处理。
图像增强是数字图像处理最简单和最有吸引力的领域。基本上,增强技术后面的思路是显现那些被模糊了的细节,或简单地突出一幅图像中感兴趣的特征。一个图像增强的例子是增强图像的对比度,使其看起来好一些。应记住,增强是图像处理中非常主观的领域,这一点很重要。
图像复原也是改进图像外貌的一个处理领域。然而,不像增强,图像增强是主观的,而图像复原是客观的。在某种意义上说,复原技术倾向于以图像退化的数学或概率模型为基础。另一方面,增强以怎样构成好的增强效果这种人的主观偏爱为基础。
彩色图像处理已经成为一个重要领域,因为基于互联网的图像处理应用在不断增长。就使得在彩色模型、数字域的彩色处理方面涵盖了大量基本概念。在后续发展,彩色还是图像中感兴趣特征被提取的基础。
小波是在各种分辨率下描述图像的基础。特别是在应用中,这些理论被用于图像数据压缩及金字塔描述方法。在这里,图像被成功地细分为较小的区域。
压缩,正如其名称所指的意思,所涉及的技术是减少图像的存储量,或者在传输图像时降低频带。虽然存储技术在过去的十年内有了很大改进,但对传输能力我们还不能这样说,尤其在互联网上更是如此,互联网是以大量的图片内容为特征的。图像压缩技术对应的图像文件扩展名对大多数计算机用户是很熟悉的(也许没注意),如JPG文件扩展名用于JPEG(联合图片专家组)图像压缩标准。
形态学处理设计提取图像元素的工具,它在表现和描述形状方面非常有用。这一章的材料将从输出图像处理到输出图像特征处理的转换开始。
分割过程将一幅图像划分为组成部分或目标物。通常,自主分割是数字图像处理中最为困难的任务之一。复杂的分割过程导致成功解决要求物体被分别识别出来的成像问题需要大量处理工作。另一方面,不健壮且不稳定的分割算法几乎总是会导致最终失败。通常,分割越准确,识别越成功。
表示和描述几乎总是跟随在分割步骤的输后边,通常这一输出是未加工的数据,其构成不是区域的边缘(区分一个图像区域和另一个区域的像素集)就是其区域本身的所有点。无论哪种情况,把数据转换成适合计算机处理的形式都是必要的。首先,必须确定数据是应该被表现为边界还是整个区域。当注意的焦点是外部形状特性(如拐角和曲线)时,则边界表示是合适的。当注意的焦点是内部特性(如纹理或骨骼形状)时,则区域表示是合适的。则某些应用中,这些表示方法是互补的。选择一种表现方式仅是解决把原始数据转换为适合计算机后续处理的形式的一部分。为了描述数据以使感兴趣的特征更明显,还必须确定一种方法。描述也叫特征选择,涉及提取特征,该特征是某些感兴趣的定量信息或是区分一组目标与其他目标的基础。
识别是基于目标的描述给目标赋以符号的过程。如上文详细讨论的那样,我们用识别个别目标方法的开发推出数字图像处理的覆盖范围。
到目前为止,还没有谈到上面图2中关于先验知识及知识库与处理模块之间的交互这部分内容。关于问题域的知识以知识库的形式被编码装入一个图像处理系统。这一知识可能如图像细节区域那样简单,在这里,感兴趣的信息被定位,这样,限制性的搜索就被引导到寻找的信息处。知识库也可能相当复杂,如材料检测问题中所有主要缺陷的相关列表或者图像数据库(该库包含变化检测应用相关区域的高分辨率卫星图像)。除了引导每一个处理模块的操作,知识库还要控制模块间的交互。这一特性上面图2中的处理模块和知识库间用双箭头表示。相反单头箭头连接处理模块。
边缘检测
边缘检测是图像处理和计算机视觉中的术语,尤其在特征检测和特征抽取领域,是一种用来识别数字图像亮度骤变点即不连续点的算法。尽管在任何关于分割的讨论中,点和线检测都是很重要的,但是边缘检测对于灰度级间断的检测是最为普遍的检测方法。
虽然某些文献提过理想的边缘检测步骤,但自然界图像的边缘并不总是理想的阶梯边缘。相反,它们通常受到一个或多个下面所列因素的影响:1.有限场景深度带来的聚焦模糊;2.非零半径光源产生的阴影带来的半影模糊;3.光滑物体边缘的阴影;4.物体边缘附近的局部镜面反射或者漫反射。
一个典型的边界可能是(例如)一块红色和一块黄色之间的边界;与之相反的是边线,可能是在另外一种不变的背景上的少数不同颜色的点。在边线的每一边都有一个边缘。
在对数字图像的处理中,边缘检测是一项非常重要的工作。如果将边缘认为是一定数量点亮度发生变化的地方,那么边缘检测大体上就是计算这个亮度变化的导数。为简化起见,我们可以先在一维空间分析边缘检测。在这个例子中,我们的数据是一行不同点亮度的数据。例如,在下面的1维数据中我们可以直观地说在第4与第5个点之间有一个边界:
5 7 6 4 152 148 149
如果光强度差别比第四个和第五个点之间小,或者说相邻的像素点之间光强度差更高,就不能简单地说相应区域存在边缘。而且,甚至可以认为这个例子中存在多个边缘。除非场景中的物体非常简单并且照明条件得到了很好的控制,否则确定一个用来判断两个相邻点之间有多大的亮度变化才算是有边界的阈值,并不是一件容易的事。实际上,这也是为什么边缘检测不是一个简单问题的原因之一。
有许多用于边缘检测的方法,它们大致可分为两类:基于搜索和基于零交叉.基于搜索的边缘检测方法首先计算边缘强度,通常用一阶导数表示,例如梯度模;然后,用计算估计边缘的局部方向,通常采用梯度的方向,并利用此方向找到局部梯度模的最大值。基于零交叉的方法找到由图像得到的二阶导数的零交叉点来定位边缘。通常用拉普拉斯算子或非线性微分方程的零交叉点,我们将在后面的小节中描述.滤波做为边缘检测的预处理通常是必要的,通常采用高斯滤波。
已发表的边缘检测方法应用计算边界强度的度量, 这与平滑滤波有本质的不同. 正如许多边缘检测方法依赖于图像梯度的计算, 他们用不同种类的滤波器来估计x-方向和y-方向的梯度.
一旦我们计算出导数之后,下一步要做的就是给出一个阈值来确定哪里是边缘位置。阈值越低,能够检测出的边线越多,结果也就越容易受到图片噪声的影响,并且越容易从图像中挑出不相关的特性。与此相反,一个高的阈值将会遗失细的或者短的线段。
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[499551],资料为PDF文档或Word文档,PDF文档可免费转换为Word
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。