For. Stud. China, 2008, 10(4): 270–273
DOI 10.1007/s11632-008-0049-z
RESEARCH ARTICLE
Effect of compression on hydroscopicity of extracted
Chinese fir heartwood
ZHENG Xin, CAO Jin-zhen*, MAO Jia
College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P. R. China
Abstract In order to clarify the effects of extraction and compression on the hydroscopicity of wood, Chinese fir (Cunninghamia
lanceolata Hook.) heartwood samples with or without extraction were radially or tangentially compressed under water-saturated
condition at room temperature. Warm water and 1% sodium hydroxide were used as different solutions for extraction. Water absorp-
tion capacity and moisture adsorption isotherms of the compressed samples were then tested. The fractal dimension of internal wood
surfaces (Dfs) was calculated based on adsorption isotherms by FHH equation. Results showed that in both compressed groups, the
hydroscopicity of samples extracted by sodium hydroxide solution improved greatly, while that of samples extracted by warm water
changed little, compared with that of water-saturated samples. Recovery of set and the change of hydroscopic environment inside
wood were main reasons for the difference of water absorption among water-saturated samples and samples extracted with warm
water and sodium hydroxide solution. The swelling rate of samples extracted by sodium hydroxide solution significantly increased.
Moreover, the swelling rate in the tangential direction of tangentially compressed samples was obviously higher than that in radial
direction of radially compressed ones. Dfs values of woods extracted by warm water and sodium hydroxide solution decreased by
0.002 and 0.007 in a radially compressed group and by 0.013 and 0.013 in a tangentially compressed group, compared to those of
water-saturated one. Therefore, the conclusion can be made that the extraction and compression treatments used in this study have no
obvious effects on internal wood surface.
Key words Chinese fir, compression, extraction, hydroscopicity, fractal dimension
1 Introduction
The hydroscopicity of wood is closely related to the
condition of internal wood surface, chemical composi-
tion and microstructure of wood. Therefore, the
change on internal wood surface or microstructure of
wood can be reflected by hydroscopicity of wood,
namely, water absorption capacity and moisture ad-
sorption of wood.
Compression of wood for improving intake of pre-
servatives was first tried by Cech and Huffman (1970).
The average retention of preservatives in the wood
with an initial moisture content (MC) of 20% and a
compression level of 12.5% increased by 51%. Fur-
ther studies had been made. In the wood with an initial
MC of 20% (close to fiber saturated point), large
numbers of disorganization and break of pit membrane
maybe happen (Gunzerodt et al., 1988). Liquid uptake
was improved when compression was conducted un-
der the conditions which required high compression
force, i.e., at low MC, low temperature, etc (Sakai,
1994). Precompressed wood was dried while it main-
tained deformation using thickness binders. This pre-
set-fixed wood absorbed 25 times as much water
compared with the untreated wood (Iida and Imamura,
1993). There is a marked increase in solution uptake
of compressed wood after extraction with hot water.
*Author for correspondence. E-mail: caoj@bjfu.edu.cn
The difference among wood species with respect to
solution uptake, correlated with whether the accumu-
lation of extractives material on aspirated pits can be
destroyed under large compressive deformation (Iida
et al., 2002).
Although a great amount of researches have been
done on the effect of extraction or compression on
hydroscopicity of wood separately, there is little re-
search on the interaction of two treatments. This study
has been designed to investigate the change of the
wood hydroscopicity resulted from the combined ef-
fect of different extraction and compression treat-
ments.
2 Materials and methods
Heartwood of 20-year-old Chinese fir (Cunninghamia
lanceolata Hook.) with an average air-drying MC of
8.2% was used to prepare samples in this study. Size
of samples was 20 mm (L) times; 20 mm (R) times; 20 mm (T).
Samples were carefully selected to have similar width
(0.65 cm) of growth ring and be free of visual defects.
There were 2–3 rings in every sample.
Samples were divided into six groups, three for ra-
dial compression and the other three for tangential
compression. The three groups under the same com-
ZHENG Xin et al.: Effect of compression on hydroscopicity of extracted Chinese fir heartwood 271
pression condition were subject to different extraction
treatments. Samples in one group were soak-treated in
distilled water for 30 d to reach water saturation state,
and the other two groups extracted by distilled water
and 1% sodium hydroxide solution respectively at
60°C in an oven with a constant temperature for 6 h.
All samples were compressed to a target thickness of
12 mm (compression ratio of 40%) at a compression
rate of 1 mm·min–1. All samples were stored in an
oven with a constant temperature 20°C and relative
humidity (RH) 100% for 2 d. Then RH of the oven
de
剩余内容已隐藏,支付完成后下载完整资料
压缩对萃取处理后杉木心材吸水性的影响
材料科学与技术学院,北京林业大学,北京100083,中国
摘要:为了弄明白萃取和压缩对杉木(杉木心材)吸湿性的影响,在室温和水饱和条件下,以有或没有经过萃取和径向或切向压缩的杉木(杉木心材)样本,用温暖的水和1%的氢氧化钠进行不同的萃取。对水的吸收能力和压缩样品的水分吸附等温线被用来做测试。内部木材面的分形维数(DFS)是基于吸附等温线的FHH方程计算的。结果表明,在压缩组,与水饱和的样品比较,用氢氧化钠溶液萃取样品的吸水性大大提高,而温暖的水萃取样品变化不大。木材内部系统的恢复和吸湿环境的变化是水饱和的样品和用温暖的水及氢氧化钠溶液萃取的样品在水吸收方面产生差异的主要原因。用氢氧化钠溶液萃取样品的溶胀率显著增加。此外,在切线方向的切向压缩变形明显高于径向径向压缩的膨胀率。而用温暖的水和氢氧化钠溶液萃取的木材的DFS值,与水饱和的样品相比,在径向压缩组分别下降了0.002和0.007,在切向压缩组分别下降了0.013和0.013。因此,可以得出,在本研究中所用的提取和压缩处理对内部木材的表面没有明显的影响。
关键词:杉木,压缩,萃取,吸湿性,分形维数
- 简介
木材的吸水性是与木材内部表面的条件、木材的化学成分以及显微组织密切相关的。因此,木材内部表面或微观结构的变化可以通过木料,即,水吸收能力和木材的水分吸附的吸湿性来体现。
压缩木材最早由切克和霍夫曼(1970)用于改善防腐剂的摄入。木材防腐剂的平均滞留水平由20%的初始水分含量(MC)和12.5%的压缩水平增加了51%。进一步的研究已经发现,使用20%的初始MC(接近纤维饱和点)的木材,可能会发生很多的纹孔膜的解体和断裂的情况(Gunzerodt等人,1988)。当压缩在需要高压的环境下进行时,也就是在低的MC,低温等条件下液体的吸收能力更强(Sakai,1994)。预压缩木材用厚厚的粘合剂保持变形而变干。这种固定不变的木材相比于没有处理过的木材可以吸收25倍的水(Iida and Imamura,1993)。用热水萃取后的胶压木对溶液的吸收能力显著增加。不同方法处理的各种木料对于溶液的吸收能力的差别,与萃取而产生的积累在吸气孔的杂物在大量形变下是否能够被破坏有一定的联系(Iidaetal,2002)。
虽然已经有了很多分别针对萃取或压缩木材对其吸湿性影响的研究,但是对这两种处理方法的相互作用的研究却很少。这项研究将对不同萃取和压缩处理方法的联合作用对木材吸湿性的不同影响。
- 实验材料和方法
20岁树龄的中国杉木(杉木属)的心材,风干处理至MC 为8.2%的平均水平,用来作为研究实验的样品。在这项研究中,样本的大小是20毫米(L)times;20毫米(R)times;20毫米(T),并进行精心挑选使得样本具有类似的年轮宽度(0.65厘米)且看起来没有缺陷。每个样品上有2 - 3年轮的环。
样品分为六组,其中三组进行径向压缩处理,其他三组进行切向压缩处理。同时三组相同压缩条件下的样品再进行不同的萃取处理。其中一组样品在蒸馏水中进行为期30天的浸泡处理,以达到水饱和状态,而其他两组在烘箱中中处理6个小时,通过蒸馏水和1%的氢氧化钠溶液,在恒定温度60℃下分别进行溶液萃取处理。所有样品以1mm每分钟的压缩速率压缩至12毫米(40%压缩比)的目标厚度。 所有样品储存在烘箱中,以恒定温度20℃和相对湿度(RH)100%的条件下储存2天。然后将烘箱的相对湿度(RH)以每12小时10%的速率降低,直至相对湿度降低到到60%以下。最后,用烘箱将所有的样品进行干燥处理,在105℃的温度条件下处理48小时,然后重复进行三次吸水和吸湿性的检测实验。在各个样本进行实验的数据被标示在表1中。 吸水率实验通过在室温下将样品浸泡在蒸馏水中进行。通过周期性地测量重量而计算得到水的摄取量。湿气吸附实验是在20℃的温度条件下,通过选取一系列的稳定含湿量进行的。恒定的相对湿度条件通过不同的浓度的硫酸溶液得以实现。在对应RH条件下的恒定含湿量被当作源数据,以产生吸附等温线。
- 结果与讨论
3.1 萃取和压缩对于吸水性的影响
进行了不同的萃取和压缩处理的木材样品的吸水性数据被列于表2。由表中看出,径向压缩组中进行水饱和处理和氢氧化钠溶液萃取的样品数据均分别大于那些切向压缩组的,由温水萃取的样品组表现则与之相反。木材径向部分的凹坑比切向部分的要多,所以径向压缩处理更容易对木材纹孔膜造成损害,使得水分的进入有了更多的道路(Chen等,2005)。但这并不是温水萃取木材而产生的数据区别的主要原因。
图1和图2表现的是吸水性随时间的变化。如这些图所示,在用氢氧化钠溶液萃取的样品数据中可以观察到吸水性有了一个很大的变化,虽然与水饱和处理的样品相比,用温水处理的样品数据中并没有明显的增加。在径向压缩样本组中,用温水处理的样品的水吸收数据相比于水饱和处理的样品数据甚至表现出了较低的数值(图1)。其中一个原因可能是氢氧化钠溶解的低聚糖打开吸气坑和毛细管堵塞的部分(Chen等,2000)。但用温水处理相对于水饱和处理的样品对吸气凹坑并没有明显的影响。
3.2 矫正、烘箱烘干和吸收过程中的尺寸变化
图3和图4表示为在烘箱干燥的回收过程中,随后浸泡在水中60天后相对于12毫米的平均尺寸厚度的变化(压缩的目标厚度)的压缩变形百分比。在水饱和处理条件下用氢氧化钠溶液萃取的样品的厚度变化相对于其他样本的数据最显著, 而用温水提取的样品表现出几乎相同的趋势。这是与水吸收处理的样品的表现在图中所示的差值一致,如图1和图2所示。另外,膨胀比(即烘箱干燥和潮湿状态之间的厚度的变化)与压缩的方向有关。所以切线方向的切向压缩样本的膨胀比明显比径线方向的径向压缩样本更高。这是由木质部射线上的径向尺寸的抑制效果和对木材的径向截面管胞的排列模式决定的(Lin等人,2004)。
3.3分形维数
内部木材表面的分形维数(DFS)可以通过FHH方程进行计算而得到(Neimark,1990年):
这里h表示相对湿度(%)和M(H)保持相对平衡时的MC在不同时间段的相对湿度。通过图5和6内的20%-70%的相对湿度区域可以看出来,LNM(h)和LN(-lnh)之间具有一定的线性关系关系。这些曲线的斜率k和DFS的值被列出在表3中。
径向压缩组中由温水和氢氧化钠溶液萃取的木材样品的DFS值相比起那些水饱和的木材样品分别下降了0.002和0.007,而切向压缩的由温水和氢氧化钠溶液萃取的样品的DFS值相比起那些水饱和的木材样品分别下降了0.013和0.013。这表明了压缩和萃取的处理使得木材细胞壁的吸附点的数量组合略有增加。逐渐增加的吸附位点可能正是吸气凹坑开放的结果。DFS值的降低还表明,切向压缩对木材内部表面的分形几何形状的影响很大。这可以解释各组样本的吸水性的的差异,以及用温水萃取的两组样品不同的吸收表现。最重要的是,DFS的变化是如此之小,通过这一情况可以认为细胞壁的主要化学构成成分和微观结构并没有产生较大的变化。
图 1:径向压缩样本的吸水性
图 2:切向压缩样本的吸水性
图 3:径向压缩样本的厚度变化
图 4:切向压缩样本的厚度变化
图 5:径向压缩样本的吸附等温线反映的LNM(h)和LN(-lnh)之间的关系
图 6:径向压缩样本的吸附等温线反映的LNM(h)和LN(-lnh)之间的关系
表格 1:各种处理方式样本的数量
处理方法 |
水饱和 |
温水萃取 |
1%氢氧化钠溶液 |
径向压缩 |
27 |
27 |
27 |
切向压缩 |
27 |
27 |
27 |
吸水性测试 |
6 |
6 |
6 |
吸湿性测试 |
48 |
48 |
48 |
表格 2:各木材样本经不同压缩和萃取方式处理后的吸水性
时间 |
径向压缩 |
切向压缩 |
||||
水饱和 |
温水 |
氢氧化钠 |
水饱和 |
温水 |
氢氧化钠 |
|
0.25 |
2.355 |
2.093 |
2.644 |
2.082 |
2.186 |
2.472 |
1 |
2.521 |
2.289 |
3.040 |
2.251 |
2.422 |
3.006 |
2 |
2.672 |
2.477 |
3.347 |
2.381 |
2.594 |
3.365 |
4 |
2.963 |
2.742 |
3.779 |
2.640 |
2.886 |
3.887 |
9 |
3.473 |
3.221 |
4.351 |
3.179 |
3.473 |
4.586 |
13 |
3.912 |
3.688 |
4.754 |
3.638 |
3.913 |
5.026 |
20 |
4.233 |
4.098 |
5.070 |
3.952 |
4.297 |
5.424 |
30 |
4.877 |
4.713 |
5.533 |
4.699 |
4.888 |
5.882 |
40 |
5.449 |
5.258 |
5.871 |
5.264 |
5.410 |
6.239 |
50 |
5.858 |
5.690 |
6.122 |
5.670 |
5.778 |
6.467 |
60 |
6.053 |
5.911 |
6.245 |
5.928 |
5.978 |
6.579 |
表格 3:萃取后的压缩木材的分形维数
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[498802],资料为PDF文档或Word文档,PDF文档可免费转换为Word
分形维数 |
径向压缩 |
切向压缩 |
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。